本文转自公众号 imath, 作者 阮一峰。
一直觉得虚数(imaginary number)很难懂。
中学老师说,虚数就是-1的平方根。
可是,什么数的平方等于-1呢?计算器直接显示出错!
直到今天,我也没有搞懂。谁能解释,虚数到底是什么?它有什么用?
对于虚数,很多童鞋都有上面的疑问,有人推荐了一篇非常棒的文章《虚数的图解》。我读后恍然大悟,醍醐灌顶,原来虚数这么简单,一点也不奇怪和难懂!下面,我就用自己的语言,讲述我所理解的虚数。
一什么是虚数
首先,假设有一根数轴,上面有两个反向的点: 1和-1。
这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转180度, 1就会变成-1。
这相当于两次逆时针旋转90度。
因此,我们可以得到下面的关系式:
( 1) * (逆时针旋转90度) * (逆时针旋转90度) = (-1)
如果把 1消去,这个式子就变为:
(逆时针旋转90度)^2 = (-1)
将'逆时针旋转90度'记为 i :
i^2 = (-1)
这个式子很眼熟,它就是虚数的定义公式。
所以,我们可以知道,虚数 i 就是逆时针旋转90度,i 不是一个数,而是一个旋转量。
二复数的定义
既然 i 表示旋转量,我们就可以用 i ,表示任何实数的旋转状态。
将实数轴看作横轴,虚数轴看作纵轴,就构成了一个二维平面。旋转到某一个角度的任何正实数,必然唯一对应这个平面中的某个点。
只要确定横坐标和纵坐标,比如( 1 , i ),就可以确定某个实数的旋转量(45度)。
数学家用一种特殊的表示方法,表示这个二维坐标:用 号把横坐标和纵坐标连接起来。比如,把 ( 1 , i ) 表示成 1 i 。这种表示方法就叫做复数(complex number),其中 1 称为实数部,i 称为虚数部。
为什么要把二维坐标表示成这样呢,下一节告诉你原因。
三虚数的作用:加法
虚数的引入,大大方便了涉及到旋转的计算。
比如,物理学需要计算'力的合成'。假定一个力是 3 i ,另一个力是 1 3i ,请问它们的合成力是多少?
根据'平行四边形法则',你马上得到,合成力就是 ( 3 i ) ( 1 3i ) = ( 4 4i )。
这就是虚数加法的物理意义。
四虚数的作用:乘法
如果涉及到旋转角度的改变,处理起来更方便。
比如,一条船的航向是 3 4i 。
如果该船的航向,逆时针增加45度,请问新航向是多少?
45度的航向就是 1 i 。计算新航向,只要把这两个航向 3 4i 与 1 i 相乘就可以了(原因在下一节解释):
( 3 4i ) * ( 1 i ) = ( -1 7i )
所以,该船的新航向是 -1 7i 。
如果航向逆时针增加90度,就更简单了。因为90度的航向就是 i ,所以新航向等于:
( 3 4i ) * i = ( -4 3i )
这就是虚数乘法的物理意义:改变旋转角度。
五虚数乘法的数学证明
为什么一个复数改变旋转角度,只要做乘法就可以了?
下面就是它的数学证明,实际上很简单。
任何复数 a bi,都可以改写成旋转半径 r 与横轴夹角 θ 的形式。
假定现有两个复数 a bi 和 c di,可以将它们改写如下:a bi = r1 * ( cosα isinα )c di = r2 * ( cosβ isinβ )
这两个复数相乘,( a bi )( c di ) 就相当于
r1 * r2 * ( cosα isinα ) * ( cosβ isinβ )
展开后面的乘式,得到
cosα * cosβ - sinα * sinβ i( cosα * sinβ sinα * cosβ )
根据三角函数公式,上面的式子就等于
cos(α β) isin(α β)
所以,
( a bi )( c di ) = r1 * r2 * ( cos(α β) isin(α β) )
这就证明了,两个复数相乘,就等于旋转半径相乘、旋转角度相加。