几何学五大公理_.2 | 元 几何公理的格局(上)

本文介绍了几何学发展,包括欧氏几何、罗氏几何和黎曼几何,指出它们都只有5个公设且不完备。提出「Ω | 元 ▪ 几何」体系,梳理其六大公设,阐述公设意义及与数字元素关系,还提及「Ω | 元」相关法则和恒等式,以坐标系说明第∞公设。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Slogan

一切皆是「Ω | 元」! 连载:9 共计6217字,预计阅读时间:0分钟 ~ 也许一辈子
本文目录

上部:

Ω、向渊远流长的几何学致敬!

∞、参照坐标系,可以做「Ω | ∞」种相似变换

中部:

0、过直线外任一点,可以做「Ω | 0」条平行线

1、两点,成「Ω | 1」条直线

下部:

2、直角,成「Ω | 2」种角度

3、三点,成「Ω | 3」个圆

4、线段,可以「Ω | 4」延长

Ω
向渊远流长的几何学致敬!
数学研究的对象是“数”与“形”,形的数学就是几何学.它是以直观为主导,以培养人的空间洞察力与思维为目的.从数学发展的历史来看,几何学的第一个最重要著作就是欧几里得(Euclid,约公元前330一275年)的《几何原本》.它被世界各国翻译成各种文字.它的印刷量仅次于“圣经”,所以不少人称《几何原本》为数学工作者的“圣经”。《几何原本》在数学史乃至人类思想史上有着无比崇高的地位 。 公元前3世纪。古希腊数学家欧几里德,把人们公认的一些几何知识作为定义和公理(公设),在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。欧式几何分为,“平面几何”与“立体几何”。 数学概念:几何学

在数学的发展史上,东西方文化采用了不同的角度。

欧洲文明,从“ 形 ”的角度出发, 发展出来 几何学 。 而中国,从“ ”的角度出发,发展出来 算术 。

为了让大家更好地了解几何学,在这里普及一下算数。

算术是数学最古老、最基础和最初等的部分,它研究数的性质及其运算。算术的内容包括两部分,一部分讨论自然数的读法、写法和它的基本运算,这一部分包括进位制和记数法,主要是 十进位制,其他的进位制与十进位制仅是采用的基数不同,都可以仿照十进位数的原理和原则进行计算,算术的另一部分包括算术运算的方法与原理的应用。如分数与百分数计算,各种量及其计算,比和比例,以及算术应用题。 数学概念:算术

几何学,最早起源于2300年前的欧几里得几何,而在二、三百年前,人类才发展出来非欧几何。

非欧几里得几何,是指不同于欧几里得几何学的几何体系,简称为非欧几何,一般是指罗巴切夫斯基几何(简称罗氏几何)和黎曼的椭圆几何。它们与欧氏几何最主要的区别在于,公理体系中采用了不同的平行公设。其中,

罗氏几何,亦称“双曲集合”。黎曼几何,亦称“椭圆几何”。

12efb3adcb757aea2c300b1517773927.png 图1:欧几里得—五条公设
其中公理五又称之为平行公设(Parallel Postulate),叙述比较复杂,并不像其他公理那么显然。这个公设衍生出“三角形内角和等于一百八十度”的定理。在高斯(F. Gauss)的时代,公设五就备受质疑,数学家罗巴切夫斯基(Nikolay Ivanovitch Lobachevski)、波尔约(Bolyai)阐明第五公设只是公理系统的一种可能选择,并非必然的几何真理,也就是“三角形内角和不一定等于一百八十度”,从而发现非欧几里得的几何学,即“非欧几何”(non-Euclidean geometry)。 几何学:平行公设

欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三种几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。

在我们这个不大不小、不远不近的空间里,也就是在我们的日常生活中,欧式几何是适用的;在宇宙空间中或原子核世界,罗氏几何更符合客观实际;在地球表面研究航海、航空等实际问题中,黎曼几何更准确一些。而且黎曼几何,还是大名鼎鼎的广义相对论的数学基础。

为了更好地认识和理解数学,「Ω | 元」发展出一套「Ω | 元 ▪ 数学」体系。

「Ω | 元 ▪ 数学」,将是“数”与“形”的两位一体,犹如DNA双螺旋结构一般,同时表现出《数学》的两大基本特性:

  • “数”,具有规律性,可认识和理解:数学概念
  • “形”,具有空间感,可认识和理解:语文概念

正如几何学是数学早古老的起源之一,在「Ω | 元 ▪ 数学」体系中,我们将沿着先哲的道路前行,发展和完善「Ω | 元 ▪ 几何」体系。

我们以「Ω | 元 ▪ 永恒结构」来重新梳理一下欧氏几何学的五大公设:

Ω欧氏几何学的五大公设
0过直线外任一点,可以做一条平行线
1两点成一条直线
2直角都相等
3三点,成一圆
4线段,可以无限延长
表1:欧氏几何学的五大公设

在以上「Ω | 元 ▪ 永恒结构」表中,我们很容易就发现以下问题:

欧氏几何学还不完备,只有5个公设,还缺少1个公设。

三大几何学,都不完备,都只有5个公设,都还缺少1个公设。

接下来,我们以「Ω | 元 ▪ 永恒结构」,将欧氏几何、罗氏几何和黎曼几何三大几何学,有机地融合在一起,重新梳理一下三大几何的五大公设:

Ω三大几何学的五大公设
0过直线外任一点,可以做0、1、2、3、4、...、或∞条平行线
1两点,成0、1、2、3、4、...、或∞条直线
2直角,成0、1、2、3、4、...、或∞种角度
3三点,成0、1、2、3、4、...、或∞个圆
4线段,可以0、1、2、3、4、...、或∞延长
表2:三大几何学的五大公设 我们再制作一个新的表格,举例说明表2之中的具体涵义:
Ω三大几何学的五大公设
0过直线外任一点,可以做0条平行线,指的是:过直线外任一点,不可以做平行线过直线外任一点,可以做1条平行线,指的是:过直线外任一点,可以做1条平行线过直线外任一点,可以做4条平行线,指的是:过直线外任一点,可以做4条平行线过直线外任一点,可以做∞条平行线,指的是:过直线外任一点,可以做无穷条平行线
1两点可以成0条直线,指的是:两点不可以形成直线两点可以成1条直线,指的是:两点可以形成1条直线两点可以成4条直线,指的是:两点可以形成4条直线两点可以成∞条直线,指的是:两点可以形成无穷条直线
2直角可以成0种角度,指的是:直角不可以形成角度直角可以成1种角度,指的是:直角可以有1种角度,即直角都相等直角可以成4种角度,指的是:直角可以有4种角度直角可以成1种角度,指的是:直角可以有无穷种角度
3三点可以成0个圆,指的是:三点不可以形成圆三点可以成1个圆,指的是:三点可以形成1个圆三点可以成4个圆,指的是:三点可以形成4个圆三点可以成∞个圆,指的是:三点可以形成无穷个圆
4线段可以0延长,指的是:线段,不可以延长。线段可以1延长,指的是:线段,可以延长到1。线段可以4延长,指的是:线段,可以延长到4线段可以∞延长,指的是:线段,可以无限延长
表3:三大几何学的五大公设其中,在表3中 标粗的内容,就是欧氏几何的五大公设。而罗氏几何和黎曼几何,以及其它新发展的几何学的五大公设,都可以在表2:三大几何学的五大公设之中找到。有兴趣的读者,可以翻阅相关几何学的文献和经典,这里不再展开详述。从表2,我们可以看到,三大几何学并不完备,还缺少第∞条公设。在此,我也第一次提出 「Ω | 元 ▪ 几何」的六大公设
Ω「Ω | 元 ▪ 几何」的六大公设
参照坐标系,可以做0、1、2、3、4、...、或∞种自相似变换
0过直线外任一点,可以做0、1、2、3、4、...、或∞条平行线
1两点,成0、1、2、3、4、...、或∞条直线
2直角,成0、1、2、3、4、...、或∞种角度
3三点,成0、1、2、3、4、...、或∞个圆
4线段,可以0、1、2、3、4、...、或∞延长
表4:「Ω | 元 ▪ 几何」的六大公设

将表4简化为欧式几何,就可以看到欧式几何,隐藏但没有表述的第∞条公设,参见下表:

Ω欧氏几何的六大公设
参照坐标系,可以做∞种自相似变换
0过直线外任一点,可以做1条平行线
1两点,成1条直线
2直角,成1种角度,即直角都相等
3三点,成1个圆
4线段,可以∞延长
表5:「Ω | 欧氏几何」的六大公设

「Ω | 元 ▪ 几何」的六大公设,与「Ω | 元」的∞、0、1、2、3、4六大数字元素,有什么关系?

首先,我们作以下「Ω | 几何学」元素的定义:

Ω几何学的六大元素定义
参照坐标系
0过直线外任一点
1两点
2直角
3三点
4线段
表6:「Ω | 几何学」的六大元素定义

其次,根据《君正之道》连载4:「Ω.0 | 元 · 原始思想的火花」(上)中第Ω节:大道至简的「Ω | 元」,中所提到的:

一切皆是「Ω | 元」。

我们可以推导出以下 「Ω|元 ▪ 全息元法则」:若某个元素,具有0、1、2、3、4 、...、或∞种类,则表示这个元素具有一切种类,即「Ω | 一切种类元素」,即「Ω | 元素」。 元素,包含「Ω | 元素」。简单来说,就是 部分包含整体。这就是著名的全息原理:
全息理论是研究事物间所具的全息关系的特性和规律的学说。它具有部分是整体的缩影规律;反映事物之间的全息关系的全息等式。它本质上是事物之间的相互联系性,全息论既是理论科学又是应用科学,既是研究一般的全息理论,又研究一切科学领域的全息现象与全息规律。 全息理论:部分包含整体

根据这个定律和表6:「Ω | 几何学」的六大元素定义,我们就可以变换出以下表格:

Ω「Ω | 元 ▪ 几何」的六大公设
∞,包含「Ω | ∞」
00,包含「Ω | 0」
11,包含「Ω | 1」
22,包含「Ω | 2」
33,包含「Ω | 3」
44,包含「Ω | 4」
表7:「Ω | 元 ▪ 几何」的六大公设 佛曰,一沙一世界。

「Ω | 元 ▪ 几何」的六大公设,有什么意义?


我们前面提到,《数学》具有以下两大基本特性:

  • “数”,具有规律性,可认识和理解:数学概念
  • “形”,具有空间感,可认识和理解:语文概念

其中,「Ω | 元 ▪ 几何」所有具有的一切“形”,都可以从「Ω | 元 ▪ 几何」的六大公设之中推导出来。

另外,我们所熟知的欧氏几何、罗氏几何和黎曼几何三大几何学的五大公设,都是「Ω | 元 ▪ 几何」六大公设的投影和子集。从五大公设出发,三大几何分别都发展出来种类繁多的原理、定律和公式,这就为我们未来探索和发展「Ω | 元 ▪ 几何」的相关元原理、元定律和元公式,和建立「Ω | 元 ▪ 几何」理论体系大厦,提供了巨大的借鉴和参考作用。

在此,再次向人类的先哲们致以崇高的敬意!

参照坐标系,可以做「Ω | ∞」种相似变换

我一直在想一个问题:∞,有多少种?

现在,我们知道了答案:

∞,有「Ω | ∞」种。

即可表述为,

∞=「Ω | ∞」。

这个公式代表着,

任何一个∞,都是一个不可思议、不可描述的「Ω | ∞」。其它0、1、2、3、4元素,皆是如此。

这就是「Ω | 元 ▪ 不可思议元法则」:「Ω | 元」的任何元素,都是不可思议和不可描述的。

根据《君正之道》连载4:「Ω.0 | 元 · 原始思想的火花」(上)第Ω节,大道至简的「Ω | 元」中所确定的「Ω.0 | 元 ▪ 本源法则」第4条:

Ω一切皆是「Ω | 元」
4一切「Ω | 永恒元结构」都是相等的,即Ω = Ω、∞ = ∞、0 = 0、1 = 1、2 = 2、3 = 3、4 = 4
表8: 「Ω.0 | 元 ▪ 本源 法则」摘录

最准确的表达公式就是:

Ω一切皆是「Ω | 元」
4一切「Ω | 永恒元结构」都是相等的,即Ω=「Ω | Ω」、∞=「Ω | ∞」、0=「Ω | 0」、1=「Ω | 1」、2=「Ω | 2」、3=「Ω | 3」、4=「Ω | 4」。这就是「Ω | 元 ▪ 恒等式」
表9: 「Ω.0 | 元 ▪ 本源 法则」第4条准确表达式

这个「Ω | 元 ▪ 恒等式」代表着什么?

它代表了「Ω | 元 ▪ 同种类比较元法则」

如何知道∞?

∞=「Ω | ∞」,即∞,等于全体的∞

要知道∞元素,就要知道越多的∞元素。知道的∞元素越多,对∞元素的认识和理解就会越深,直到认识全体的∞元素。

如何知道0?

0=「Ω | 0」,即0,等于全体的0

要知道0元素,就要知道越多的0元素。知道的0元素越多,对0元素的认识和理解就会越深,直到认识全体的0元素。

如何知道1?

1=「Ω | 1」,即1,等于全体的1

要知道1元素,就要知道越多的1元素。知道的1元素越多,对1元素的认识和理解就会越深,直到认识全体的1元素。

2、3、4元素,皆是如此道理。

我们可以得到一下「Ω | 元 ▪ 恒等式」结构表:

Ω「Ω | 元 ▪ 恒等式」
∞=「Ω | ∞」,即∞,等于全体的∞
00=「Ω | 0」,即0,等于全体的0
11=「Ω | 1」,即1,等于全体的1
22=「Ω | 2」,即2,等于全体的2
33=「Ω | 3」,即3,等于全体的3
44=「Ω | 4」,即4,等于全体的4
表10: 「Ω | 元  ▪  恒等式」结构表

表10,告诉我们一个简单的大道理,那就是:

如果想要认识和知道”人“是什么,那么就要认识千千万万的人。认识的人越多,越能知道,反之,认识的人越少,越不知道。

如果想要认识和知道”物“是什么,那么就要认识千千万万的物。认识的物越多,越能知道,反之,认识的物越少,越不知道。

宇宙中的一切,都是如此。

「Ω | 元 ▪ 不可思议元法则」,更是告诉我们,宇宙的一切,包括灵法事物,都是不可思议和不可描述的,只能采用「Ω | 元 ▪ 同种类比较元法则」进行对比和比较,才能进行描述。

我们提到,∞可以对应的是「∞ | 罩子」。我们以「∞ | 罩子」来举例,来理解上面这句话:

| 几何学の罩子」,就是一个「Ω | 几何学の罩子」,它具有完整的「Ω | 元结构」基本模型:

3c464c4443cab8e6030915a43e5e941b.png 图2:「Ω | 元结构」基本模型图

 | 几何学の罩子」,就是一个「Ω | 几何学の罩子」

每个「∞ | 罩子」都罩着0、1、2、3、4和∞-,就是一个完整的小世界。有多少种「∞ | 几何学の罩子」,就有多少种的「∞ | 几何学」。

也就是说,

「Ω | 元 ▪ 几何」有着0、1、2、3、4、...、或∞种「∞ | 几何学」

从「Ω | 元 ▪ 几何」的第∞公设中,我们可以得到:

Ω「Ω | 元 ▪ 几何」的第∞公设
参照坐标系,可以做0、1、2、3、4、...、或∞种自相似变换
表11:「Ω | 元 ▪ 几何」的第∞公设

怎么理解「Ω | 元 ▪ 几何」的第∞公设?我们从《君正之道》连载7:「Ω.1 | 元 · 基本原则的奠定」(中)开篇所提到的xy平面坐标系说起:

首先,我们对「Ω | xy平面坐标系」六大元素做定义,

Ωxy平面坐标系
参照坐标系
0坐标原点,及x轴线和y轴线
1第一象限
2第二象限
3第三象限
4第四象限
表12:「Ω | xy平面坐标系」六大元素的定义

其次,在图3:xy平面坐标系这一原始的「∞ | 参考坐标系」之中,

b147558c7c86ce50d4bd8dfcc70418d8.png

图3:xy平面坐标系

假设我们只允许存在这一原始的「∞ | 参考坐标系」,就是指不可以做「∞ | 参考坐标系」的自相似变换,这就意味着这个xy平面坐标系是固定的,不可以进行任何自相似变换,即:可以做0种自相似变换

假设我们允许这个原始的「∞ | 参考坐标系」,只能进行一次以原点为中心的90度顺时针右旋,我们就得到了一个新的「∞ | 参考坐标系」。这也意味着可以做1种自相似变换

从我们熟悉的世界来看,「∞ | 参考坐标系」就是「∞ | 背景」。有时候,我们需要在不同的背景下,认识和观察事物。不同的背景,就意味着不同的参照坐标系。将事物放在越多的背景下,进行认识和观察,就能越正确地认识和观察事物,反之,在越少的背景下,认识和观察事物,有可能出现误判。

∞=「Ω | ∞」。

知道各种各样的背景,才能真正地知道:什么叫背景。

版本
作者: 君正版本号:V1.0原文创建:2020年7月9日最后更新:2020年7月9日

参考

  1. 引用数学概念:几何学
  2. 引用数学概念:算数
  3. 引用几何学:平行公设
  4. 引用全息理论:部分包含整体

引用

  1. 参考公众号:君正之道
  2. 参考君正之道连载1:「Ω | 元 · 历史与概述」
  3. 参考君正之道连载2:「Ω.∞ | 元 · 宇宙的终极思维」(上)
  4. 参考君正之道连载3:「Ω.∞ | 元 · 宇宙的终极思维」(下)
  5. 参考君正之道连载4:「Ω.0 | 元 · 原始思维的火花」(上)
  6. 参考君正之道连载5:「Ω.0 | 元 · 原始思维的火花」(下)
  7. 参考君正之道连载6:「Ω.1 | 元 · 基本原则的奠定」(上)
  8. 参考君正之道连载7:「Ω.1 | 元 · 基本原则的奠定」(中)
  9. 参考君正之道连载8:「Ω.1 | 元 · 基本原则的奠定」(下)

「Ω | 君正之道」          

Copyright © 2019-2020 君正之道 无漏之学 版权所有

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值