libsvm python_LibSVM for Python 使用

本文介绍了如何在Python中使用LibSVM库进行支持向量机(SVM)的训练和预测。首先,详细说明了安装LibSVM的步骤,包括将其添加到Python包路径。接着,通过实例展示了如何加载训练和测试数据,以及训练SVM模型。最后,讨论了LibSVM的主要接口和参数调整,包括svm_problem、svm_parameter、svm_model等,以及如何使用svm_train和svm_predict进行模型训练和预测。
摘要由CSDN通过智能技术生成

经历手写SVM的惨烈教训(还是太年轻)之后,我决定使用工具箱/第三方库

Python

LibSVM是开源的SVM实现,支持C, C++, Java,Python , R 和 Matlab 等, 这里选择使用Python版本。

安装LibSVM

将LibSVM仓库的所有内容放入Python的包目录\Lib\site-packages或者工程目录中。

在libsvm根目录和python子目录下中分别新建名为__init__.py的空文件,这两个空文件将标识所在的目录为python包可以直接导入。

允许草民吐槽一下各种Blog里切换根目录的奇怪的解决方案:这个和这个

因为经常使用svm,所以草民将libsvm包放入\Lib\site-packages目录下。在Python交互环境或在任意脚本中都可以使用import libsvm.python来使用libsvm的python接口。

使用LibSVM

LibSVM的使用非常简单,只需调用有限的接口

示例1:

from libsvm.python.svmutil import *

from libsvm.python.svm import *

y, x = [1,-1], [{1:1, 2:1}, {1:-1,2:-1}]

prob = svm_problem(y, x)

param = svm_parameter('-t 0 -c 4 -b 1')

model = svm_train(prob, param)

yt = [1]

xt = [{1:1, 2:1}]

p_label, p_acc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值