python安装tensorflow2.0_解决Linux Tensorflow2.0安装问题

conda update conda

pip install tf-nightly-gpu-2.0-preview

conda install https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/cudnn-7.3.1-cuda10.0_0.tar.bz2

conda install https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/cudatoolkit-10.0.130-0.tar.bz2

说明:

首先需要更新conda

安装的是tf2.0最新版

cudnn7.3.1和cudatoolkit-10.0版本,可以下载下来本地安装

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/cudnn-7.3.1-cuda10.0_0.tar.bz2

conda install cudnn-7.3.1-cuda10.0_0.tar.bz2

出现的错误及解决方案

旧库问题

ERROR: Cannot uninstall 'wrapt'. It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.

旧版本依赖多,不能清晰的删除,此时应该忽略旧版本升级,即如下 解决办法: pip install tf-nightly-gpu-2.0-preview --ignore-installed wrapt

numpy版本问题

还有一个问题是说numpy存在旧版本,可以使用pip卸载numpy,直到提示没有可卸载的为止,然后重新安装numpy

驱动问题

tensorflow.python.framework.errors_impl.InternalError: cudaGetDevice() failed. Status: CUDA driver version is insufficient for CUDA runtime version

这是因为驱动版本不匹配导致的,可以到NVIDIA官网下载cuda10.0(和上面的一致)的驱动

查看结果:

测试及其他

测试可用:

import tensorflow as tf

print(tf.__version__)

print(tf.keras.__version__)

if tf.test.is_gpu_available():

device = "/gpu:0"

else:

device = "/cpu:0"

print(device)

减少tensorflow输出信息

TensorFlow的log信息共有四个等级,按重要性递增为:INFO(通知)

tf.compat.v1.logging.set_verbosity('ERROR')

或者

import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'

tensorflow2.0在pycharm下提示问题

tensorflow2.0 使用keras一般通过tensorflow.keras来使用,但是pycharm没有提示,原因是因为实际的keras路径放在tensorflow/python/keras,但是在程序中tensorflow有没有python这个目录,解决方法如下:

try:

import tensorflow.python.keras as keras

except:

import tensorflow.keras as keras

这样pycharm既可以有提示,同时也不需要在程序运行的时候修改代码了。

总结

以上所述是小编给大家介绍的解决Linux Tensorflow2.0安装问题,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!

如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值