Pandas-分组函数groupby中(apply,agg,transform)方法的比较

本文介绍了Pandas中groupby操作的apply, agg和transform三个方法的区别。agg输出缩减后的标量或标量列表,transform保持原DataFrame大小但数据经过转换,apply则灵活多样,可输出标量或Pandas对象。作者通过实例解析帮助初学者理解这些方法。" 91140406,7826875,Vue项目部署到GitHub并启用HTTPS,"['Vue', 'github', '发布', '前端开发', '项目部署']
摘要由CSDN通过智能技术生成

pandas模块给数据处理的能力给予了很大的助力,但是初学者刚开始可能会被其中分组聚合的三个方法(apply,agg和transform),弄的头晕眼花,至少我自己学习的过程中是这样的,看了网上的很多解释,觉得对于初学者理解起来还是蛮困难的,翻阅了好几本python数据分析的书籍,自己总算理解了个大概,在这里给大家讲一下这三个方法。
具体请看《Python数据科学手册》(Jake Vanderplas著)的146页哈,另外这本书强烈推荐,看过Wes McKinney著的《利用Python进行数据分析》,再看这本书,很多概念会有一种恍然大悟的感觉。
简单的说,agg,transform和apply三个方法的输入对象,都是分组后的DataFrame/Series,区别在于,他们的输出类型不一样,agg输出的是缩减后的标量(或者标量列表);transform输出的是原输入的DataFrame大小的,但是数据元素经过了转换的DataFrame;apply就很灵活了,它既可以是缩减后的标量,也可以是pandas对象(注意这里是pandas对象哦,并不仅仅是DataFrame哦)。

下面我来用一个例子解释:
 

#创建一个DataFrame
import pandas as pd
import numpy as np
rng=np.random.RandomState(0)
df=pd.DataFrame({'key':list('ABCABC'),'data1':range(6),'data2':rng.randint(0,10,6)})

#输出的结果是
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值