deval函数_【笔记】常微分方程(1)

本文介绍了使用MATLAB求解常微分方程的方法,包括ode45、ode23s等指令,以及解微分方程的数值解和边值问题解法。通过示例详细展示了如何运用MATLAB命令进行计算和绘图,并讨论了不同指令的适用情况和精度。
摘要由CSDN通过智能技术生成

表1 解常微分方程主要MATLAB指令

主题词

意义

主题词

意义

ode45

4、5阶Runge-kutta法

ode23s

刚性方程组二阶Rosenbrock法

ode23

2、3阶Runge-kutta法

ode23tb

刚性方程组低精度算法

ode113

多步Adams算法

bvpinit

边值问题预估计

odeset

解ode选项设置

bvp4c

边值问题解法

ode23t

适度刚性问题梯形算法

deval

微分方程解的求值

ode15s

刚性方程组多步Gear法

微分方程的相关知识

1、微分方程的概念

含有未知的函数及其某些阶的导数以及自变量本身的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。如果未知函数是多元函数,称为偏微分方程。联系一些未知函数的一组微分方程称为微分方程组。微分方程中出现的未知函数的导数的最高阶数称为微分方程的阶。如果方程中未知函数及其各阶导数都是一次的,称为线性常微分方程。若各系数为常数,称之为常系数(或定常、自治、时不变)的。

2、初等积分法

有些方程可以直接通过积分求解。例如,一阶常系数线性常微分方程

y’=ay+b   (a!=0)

可化为

dy/(ay+b)=dt

两边积分可得通解为:

y(t)=Cexp(at)-a^-1b

其中C为任意常数

3、常系数线性微分方程

例1 求x’’+0.2x’+3.92x=0的通解。

解: 特征方程为

λ²+0.2λ+3.92=0

>> roots([1 0.2 3.92])

ans =

-0.1000 + 1.9774i

-0.1000 - 1.9774i

求得共轭复根-0.1000 ±1.9774i,从而通解为:

x(t)=Aexp(-0.1t)cos(1.9774t)+Bexp(-0.1t)sin(1.9774t)

其中A,B为任意常数。

4、初值问题数值解

除常系数线性微分方程可用特征根法求解,少数特殊方程可用初等积分法求解外,大部分微分方程无显式解,应用中主要依靠数值解法。

考虑一阶常微分方程组初值问题

y’=f(t,y),  t0

其中y=(y1,y2,…,ym)T,f=(f1,f2,…,fm)T,y0=(y10,y20,…,ym0)T,这里T表示转置。

所谓数值解就是寻求解y(t)在一系列离散点t0

高阶微分方程初值问题可以化为一阶常微分方程组,已给一个n阶方程,即

,则上式可化为一阶方程组

解:编写如下程序:

clear

f=inline('y-2*x/y','x','y');

a=0;

b=1;

h=0.1;

n=(b-a)/h;

x=zeros(1,n+1);

y=zeros(1,n+1);

y(1)=1;

for i=1:n+1

x(i)=a+(i-1)*h;</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值