python模糊图像清晰化_Python图像处理介绍图像模糊与锐化

本文介绍了如何使用Python对图像进行模糊和锐化处理,探讨了高斯模糊内核和锐化内核的应用,并通过卷积操作展示效果。在处理彩色图像时,遇到维数错误,需先将图像转换为灰度。文章还讨论了在RGB、YUV和HSV色彩空间中应用卷积内核的不同效果,指出在处理光照和颜色时选择合适的色彩空间的重要性。
摘要由CSDN通过智能技术生成
9b141d4d88b6163ddf7b08966810d3e2.png欢迎关注 “小白玩转Python”,发现更多 “有趣”

引言

在之前的文章中,我们讨论了边缘检测内核。在本文我们将讨论如何在图像上应用模糊与锐化内核,将这些内核应用到彩色图像上,同时保留核心图像。

一如既往,我们从导入所需的python库开始。

import numpy as npimport matplotlib.pyplot as pltfrom skimage.io import imshow, imreadfrom skimage.color import rgb2yuv, rgb2hsv, rgb2gray, yuv2rgb, hsv2rgbfrom scipy.signal import convolve2d

读取本文将使用的图像。

dog = imread('fire_dog.png')plt.figure(num=None, figsize=(8, 6), dpi=80)imshow(dog);

da407c33fa444aaffcac2cbbf51efe6a.png

现在我们应用于图像的内核是高斯模糊内核和锐化内核。

# Sharpensharpen = np.array([[0, -1, 0],                    [-1, 5, -1],                    [0, -1, 0]])# Gaussian Blurgaussian = (1 / 16.0) * np.array([[1., 2., 1.],                                  [2., 4., 2.],                                  [1., 2., 1.]])fig, ax = plt.subplots(1,2, figsize = (17,10))ax[0].imshow(sharpen, cmap='gray')ax[0].set_title(f'Sharpen', fontsize = 18)    ax[1].imshow(gaussian, cmap='gray')ax[1].set_title(f'Gaussian Blur', fontsize = 18)    [axi.set_axis_off() for axi in ax.ravel()];

9fd5a7e980432d77b3106d4930ef6113.png

但我们如何将这些内核应用到我们的图像中呢?那么,让我们直接通过卷积来试试。

def multi_convolver(image, kernel, iterations):    for i in range(iterations):        image = convolve2d(image, kernel, 'same', boundary = 'fill',              
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值