kkt条件例题求最优解_「管理数学基础」3.4 凸分析:最优性的充要条件、无约束极小化问题、一般非线性规划问题...

6dfcdcd0fa76021161f6d0b8528d5d57.png

最优性的充要条件、无约束极小化问题、一般非线性规划问题

无约束极小化问题

定义:无约束极小化问题

78ec7d516043e8c8484317c647c4f271.png

分析:

  • 上面规定了无约束极小化问题的一般形式
  • 注意,平稳点(一阶导为零)未必是局部极值点

定理:二阶必要条件

3083339c3122b3e7f5448ea86aa404fb.png

分析:

  • 如果是局部极小点,那么必有什么条件
  • 在上图证明中,应用了泰勒展开和平稳点性质

定理:二阶充分条件

9f0ff719b9f541aa745692ca02eb4d6b.png

分析:

  • 如何证明是严格局部极小值
  • 该定理可以用凸函数等价条件轻松证明

一般非线性规划问题

03ea9a6f082cc6087ca5798b5e9b35ea.png

44cf8c42833ed5347745c06d71396eab.png

分析:

  • 起作用的约束为积极约束(可想想象凸集中贴着边缘)
  • 与起作用的
    线性无关,则为
    正则点
  • 这很好理解,可以想象在空间中,
    为了取得能取到的最优值,努力贴近约束边缘(起作用的
    )的样子

KKT一阶必要条件

296449bce0fa59297a25d64d71f83b34.png

上述是一个基本的KKT条件,其逆(如果KKT点,则是最小值点)不一定成立。

但是,如果满足以下条件(f凸、h线性、g凹),则成立。

0361e92e2475fbd97ed64e1e15db0cf2.png

你会发现这和拉格朗日中的约束很像。

证明:KKT条件

972a9d196ff5d0a607f0f8faf6c41f0e.png

思路为(与证明过程顺序是逆过来的):

  • 为了证明
    必是最优解,即为了得出
  • 考虑使用凸函数不等式
  • 考虑在上式中消去
  • 用KKT来构造,分别从与
    有关的
    以及
    下手

例题:必考题求KKT点

b26d016797de989bafc8b822518d2712.png

288b4dc3dbc1db9dff41708a317bf0e8.png

如上,要注意:

  • 不管题目里提没题“证明是凸规划”,一定要先验证一下是不是凸规划
  • 求解时,所有变量都是变量,平起平坐,此外,对于乘积为0的等式,分别讨论谁等于0是个不错的选择
  • 一旦遇到可行解,则停下,必是最优解

d7b0f4fddb416a553aa586bf7493c579.png
  • 9
    点赞
  • 41
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: KKT点是指在求解约束最优问题时,根据KKT(Karush-Kuhn-Tucker)条件,得到的一组满足特定约束条件的最优解点。 下面以一个简单的线性规划问题为例,说明KKT点的求解过程: 假设有一个线性规划问题: 最大目标函数:f(x) = 2x1 + 3x2 约束条件:x1 + x2 = 4,x1 >= 0,x2 >= 0 首先,我们需要列出拉格朗日函数: L(x1, x2, λ) = 2x1 + 3x2 + λ(4 - x1 - x2) 然后,我们计算关于x1、x2和λ的偏导数,得到一组方程: ∂L/∂x1 = 2 - λ = 0 ∂L/∂x2 = 3 - λ = 0 ∂L/∂λ = 4 - x1 - x2 = 0 解方程得到: λ = 2 x1 = 2 x2 = 1 接下来,我们还需检查KKT条件: 1. 平衡条件:∂L/∂x1 = 0,∂L/∂x2 = 0 在λ = 2、x1 = 2、x2 = 1的情况下,平衡条件成立。 2. 相容松弛条件:λ >= 0,4 - x1 - x2 >= 0,λ(4 - x1 - x2) = 0 在λ = 2、x1 = 2、x2 = 1的情况下,相容松弛条件成立。 因此,KKT点的解为: λ = 2 x1 = 2 x2 = 1 这就是该线性规划问题的KKT点。它表示在给定的约束条件下,使得目标函数达到最大值的最优解。 ### 回答2: 约束问题的KKT点是指满足Karush-Kuhn-Tucker(KKT)条件的点。 KKT条件适用于具有等式约束和不等式约束的最优问题。其主要包括以下几个方面: 1. 平衡条件:将拉格朗日乘子与原问题联系起来。对于等式约束条件,乘子乘以相应的约束条件必须等于零;对于不等式约束条件,乘子与相应的不等式约束条件相乘必须为零。 2. 不等式约束条件:对于不等式约束条件,原问题的变量必须满足不等式约束条件,且乘子大于等于零。 3. 对偶互补条件:KKT条件的最重要部分之一,乘子与约束条件的乘积为零。意味着如果某个不等式约束条件被激活,则相应的乘子必须大于零。而如果乘子为零,则相应的不等式约束条件可以被忽略。 4. 梯度条件:对于最小问题,原问题的目标函数的梯度向量与等式约束条件的梯度矩阵的乘积等于零;对于最大问题,梯度向量的相反数与等式约束条件的梯度矩阵的乘积等于零。 举个例子来说明KKT点的概念。考虑一个最小问题:min f(x),其中x是优变量,有等式约束条件g(x) = 0和不等式约束条件h(x) >= 0。根据KKT条件,存在拉格朗日乘子λ和μ,使得以下条件满足: 1. 平衡条件:g(x)=0,μh(x)=0 2. 不等式约束条件:h(x)>=0,μ>=0 3. 对偶互补条件:μh(x)=0 4. 梯度条件:∇f(x) + ∇g(x)λ + ∇h(x)μ = 0 这些条件综合起来就构成了KKT条件。在求解最优问题时,满足KKT条件的点被认为是可能的最优解。因此,通过求解KKT条件可以找到问题的局部最优解。 ### 回答3: 约束问题的KKT点是指满足KKT条件最优解点。KKT条件是一种解决约束问题的优方法,包含了一组充分必要条件。下面举一个例题来说明。 假设我们要求解以下优问题: 最小函数 f(x) = x^2 + 1,满足约束条件:x >= 1 首先,我们可以计算函数 f(x) 的导数 f'(x) = 2x。由于 f'(x) 存在,我们可以得出问题具有最优解。 接下来,我们来写出KKT条件: 1. f'(x) + λg'(x) = 0,其中 g(x) 是约束条件,g'(x) 是 g(x) 的导数,λ 是 Lagrange 乘子。在这个例子中,约束条件是 g(x) = x - 1,因此 g'(x) = 1。我们带入上面的导数 f'(x) = 2x 和约束条件的导数得:2x + λ = 0,即 x + λ/2 = 0。 2. g(x) = 0,约束条件 g(x) = x - 1,因此 x - 1 = 0,即 x = 1。 3. λg(x) = 0,根据上面的约束条件 g(x) = x - 1,λg(x) = λ(x - 1),这里 x = 1,所以 λ(x - 1) = λ(1 - 1) = λ * 0 = 0。 综上所述,KKT条件为:x + λ/2 = 0,x = 1,λ(x - 1) = 0。 解这个方程组,我们可以得出 x = 1,λ = 0。因此,最优解为 x = 1,且满足约束条件 x >= 1。所以 (1, 0) 是这个优问题的KKT点。 这个例子演示了如何使用KKT条件来判断约束问题最优解,并找到满足条件的点。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值