kkt条件例题求最优解_「管理数学基础」3.4 凸分析:最优性的充要条件、无约束极小化问题、一般非线性规划问题...

本文探讨了无约束极小化问题及其解决方法,包括二阶必要条件和充分条件。进一步分析了一般非线性规划问题,并详细解释了KKT条件,通过实例展示了如何寻找KKT点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6dfcdcd0fa76021161f6d0b8528d5d57.png

最优性的充要条件、无约束极小化问题、一般非线性规划问题

无约束极小化问题

定义:无约束极小化问题

78ec7d516043e8c8484317c647c4f271.png

分析:

  • 上面规定了无约束极小化问题的一般形式
  • 注意,平稳点(一阶导为零)未必是局部极值点

定理:二阶必要条件

3083339c3122b3e7f5448ea86aa404fb.png

分析:

  • 如果是局部极小点,那么必有什么条件
  • 在上图证明中,应用了泰勒展开和平稳点性质

定理:二阶充分条件

9f0ff719b9f541aa745692ca02eb4d6b.png

分析:

  • 如何证明是严格局部极小值
  • 该定理可以用凸函数等价条件轻松证明

一般非线性规划问题

03ea9a6f082cc6087ca5798b5e9b35ea.png

44cf8c42833ed5347745c06d71396eab.png

分析:

  • 起作用的约束为积极约束(可想想象凸集中贴着边缘)
  • 与起作用的
    线性无关,则为
    正则点
  • 这很好理解,可以想象在空间中,
    为了取得能取到的最优值,努力贴近约束边缘(起作用的
    )的样子

KKT一阶必要条件

296449bce0fa59297a25d64d71f83b34.png

上述是一个基本的KKT条件,其逆(如果KKT点,则是最小值点)不一定成立。

但是,如果满足以下条件(f凸、h线性、g凹),则成立。

0361e92e2475fbd97ed64e1e15db0cf2.png

你会发现这和拉格朗日中的约束很像。

证明:KKT条件

972a9d196ff5d0a607f0f8faf6c41f0e.png

思路为(与证明过程顺序是逆过来的):

  • 为了证明
    必是最优解,即为了得出
  • 考虑使用凸函数不等式
  • 考虑在上式中消去
  • 用KKT来构造,分别从与
    有关的
    以及
    下手

例题:必考题求KKT点

b26d016797de989bafc8b822518d2712.png

288b4dc3dbc1db9dff41708a317bf0e8.png

如上,要注意:

  • 不管题目里提没题“证明是凸规划”,一定要先验证一下是不是凸规划
  • 求解时,所有变量都是变量,平起平坐,此外,对于乘积为0的等式,分别讨论谁等于0是个不错的选择
  • 一旦遇到可行解,则停下,必是最优解

d7b0f4fddb416a553aa586bf7493c579.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值