
最优性的充要条件、无约束极小化问题、一般非线性规划问题
无约束极小化问题
定义:无约束极小化问题

分析:
- 上面规定了无约束极小化问题的一般形式
- 注意,
平稳点
(一阶导为零)未必是局部极值点
定理:二阶必要条件

分析:
- 如果是局部极小点,那么必有什么条件
- 在上图证明中,应用了泰勒展开和平稳点性质
定理:二阶充分条件

分析:
- 如何证明是严格局部极小值
- 该定理可以用凸函数等价条件轻松证明
一般非线性规划问题


分析:
- 起作用的约束为
积极约束
(可想想象凸集中贴着边缘) -
与起作用的
线性无关,则为
正则点
- 这很好理解,可以想象在空间中,
为了取得能取到的最优值,努力贴近约束边缘(起作用的
)的样子
KKT一阶必要条件

上述是一个基本的KKT条件,其逆(如果KKT点,则是最小值点)不一定成立。
但是,如果满足以下条件(f凸、h线性、g凹)
,则成立。

你会发现这和拉格朗日中的约束很像。
证明:KKT条件

思路为(与证明过程顺序是逆过来的):
- 为了证明
必是最优解,即为了得出
- 考虑使用凸函数不等式
- 考虑在上式中消去
- 用KKT来构造,分别从与
有关的
以及
下手
例题:必考题求KKT点


如上,要注意:
- 不管题目里提没题“证明是凸规划”,一定要先验证一下是不是凸规划
- 求解时,所有变量都是变量,平起平坐,此外,对于乘积为0的等式,分别讨论谁等于0是个不错的选择
- 一旦遇到可行解,则停下,必是最优解
