多个子图:
有时,并排比较不同的数据视图会很有帮助。为此,Matplotlib具有子图的概念:可以在单个图中一起存在的较小轴组。这些子图可能是插图,图形网格或其他更复杂的布局。在本节中,我们将探讨在Matplotlib中创建子图的四个例程。
%matplotlib inline
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')
import numpy as np
plt.axes:手绘子图
创建轴的最基本方法是使用该plt.axes功能。正如我们之前所见,默认情况下,这会创建一个填充整个图形的标准轴对象。 plt.axes还有一个可选参数,它是图坐标系中四个数字的列表。这些数字表示[left, bottom, width, height]在图形坐标系中,其范围从图的左下角的0到图的右上角的1。
例如,我们可以通过将x和y位置设置为0.65(即,从宽度的65%和图的高度的65%开始)在另一个轴的右上角创建一个插入轴,并且x和y范围为0.2(也就是说,轴的大小是宽度的20%和图的高度的20%):
ax1 = plt.axes() # standard axes
ax2 = plt.axes([0.65, 0.65, 0.2, 0.2])
在面向对象的接口中等效于此命令fig.add_axes()。让我们用它来创建两个垂直堆叠的轴:
fig = plt.figure()
ax1 = fig.add_axes([0.1, 0.5, 0