python的plt绘制子图_Matplotlib 多子图绘制

本文介绍了在Python的Matplotlib库中如何创建和管理子图,包括使用`plt.axes`手绘子图,使用`plt.subplot`创建简单网格,使用`plt.subplots`一次性创建整个网格,以及使用`plt.GridSpec`实现更复杂的子图布局。通过示例展示了如何调整子图间距、创建垂直堆叠的轴以及创建跨越多行和列的子图。
摘要由CSDN通过智能技术生成

多个子图:

有时,并排比较不同的数据视图会很有帮助。为此,Matplotlib具有子图的概念:可以在单个图中一起存在的较小轴组。这些子图可能是插图,图形网格或其他更复杂的布局。在本节中,我们将探讨在Matplotlib中创建子图的四个例程。

%matplotlib inline

import matplotlib.pyplot as plt

plt.style.use('seaborn-white')

import numpy as np

plt.axes:手绘子图

创建轴的最基本方法是使用该plt.axes功能。正如我们之前所见,默认情况下,这会创建一个填充整个图形的标准轴对象。 plt.axes还有一个可选参数,它是图坐标系中四个数字的列表。这些数字表示[left, bottom, width, height]在图形坐标系中,其范围从图的左下角的0到图的右上角的1。

例如,我们可以通过将x和y位置设置为0.65(即,从宽度的65%和图的高度的65%开始)在另一个轴的右上角创建一个插入轴,并且x和y范围为0.2(也就是说,轴的大小是宽度的20%和图的高度的20%):

ax1 = plt.axes() # standard axes

ax2 = plt.axes([0.65, 0.65, 0.2, 0.2])

在面向对象的接口中等效于此命令fig.add_axes()。让我们用它来创建两个垂直堆叠的轴:

fig = plt.figure()

ax1 = fig.add_axes([0.1, 0.5, 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值