简介:Python 2.7.3是一个里程碑式的Python版本,虽然现在被Python 3.x取代,但作为学习基础仍具有重要价值。本文介绍了Python语言的基础知识,Python 2.x与Python 3.x的主要差异,提供了Python 2.7.3的详细安装指南,包括下载、解压、配置、编译、安装以及环境变量的设置。同时,解释了Python模块搜索路径的概念,并概述了Python-2.7.3包包含的内容。本教程针对希望系统学习和使用Python 2.7.3的初学者,但强调了转向Python 3.x的必要性。
1. Python 2.7.3的历史地位和版本改进
Python 2.7.3作为Python 2系列的迭代版本之一,在历史长河中扮演了承前启后的关键角色。尽管Python 3的推出使整个社区为之振奋,Python 2.7.3仍旧在很多生产环境中运行。本章节将探讨Python 2.7.3的核心改进点,以及它对Python 3.x版本所奠定的基础。
1.1 Python 2.7.3的关键改进
Python 2.7.3作为2.x系列的稳定版,推出于2011年,并在2014年得到最后一次官方维护更新。该版本的关键改进点包括: - 性能的优化; - 稳定性的增强; - 各种bug修复。
1.2 对Python 3.x版本的贡献
Python 2.7.3的重要之处在于,它是向Python 3过渡的桥梁。它引入了与Python 3兼容的一些特性,如: - print函数的引入; - 向前兼容的语法调整。
通过这些改进,2.7.3帮助开发者逐步适应Python 3的新特性,为最终过渡到Python 3铺平了道路。
2. Python语言基础知识
2.1 Python的基本语法
2.1.1 变量和数据类型
Python中的变量是存储数据的容器,不需要声明数据类型。创建变量时,Python自动识别数据类型并分配内存。Python支持多种数据类型,包括但不限于整型(int)、浮点型(float)、字符串(str)、布尔型(bool)和复数(complex)。
# 示例:变量和数据类型
number = 10 # 整型
pi = 3.14159 # 浮点型
name = "Python" # 字符串
is_prime = True # 布尔型
complex_number = 3 + 4j # 复数
print(type(number)) # 输出: <class 'int'>
print(type(pi)) # 输出: <class 'float'>
print(type(name)) # 输出: <class 'str'>
print(type(is_prime)) # 输出: <class 'bool'>
print(type(complex_number)) # 输出: <class 'complex'>
在上述代码中,我们定义了不同类型的变量,并使用 type() 函数来确认它们的数据类型。Python的动态类型系统和类型推断能力使得变量使用变得非常灵活。
2.1.2 控制结构和函数定义
Python的控制结构包括条件语句和循环语句。函数是Python中实现代码模块化和重用的构造。
条件语句示例
age = 18
if age >= 18:
print("You are an adult.")
else:
print("You are a minor.")
循环语句示例
# 示例:for 循环
for i in range(5):
print(i)
# 示例:while 循环
count = 0
while count < 5:
print(count)
count += 1
函数定义示例
def greet(name):
return "Hello, " + name + "!"
print(greet("Alice")) # 输出: Hello, Alice!
函数 greet 接受一个参数 name 并返回一个字符串,展示了函数的定义、调用和基本的参数传递机制。
2.2 Python面向对象编程基础
2.2.1 类和对象的概念
面向对象编程(OOP)是一种编程范式,它使用“对象”来设计应用和计算机程序。对象可以包含数据和代码来操作这些数据。
类定义示例
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def describe(self):
return f"{self.name} is {self.age} years old."
# 创建类的实例
person1 = Person("Bob", 25)
print(person1.describe()) # 输出: Bob is 25 years old.
在上述代码中,我们定义了一个 Person 类,并且通过 __init__ 方法初始化了实例变量。然后创建了一个 Person 对象,并调用了其 describe 方法。
2.2.2 继承和多态的应用
继承允许一个类(子类)继承另一个类(父类)的属性和方法。多态是允许不同类型的数据响应相同的消息(方法调用)。
继承示例
class Employee(Person):
def __init__(self, name, age, employee_id):
super().__init__(name, age)
self.employee_id = employee_id
def describe(self):
return super().describe() + f" Employee ID: {self.employee_id}"
employee1 = Employee("Carol", 30, "E12345")
print(employee1.describe()) # 输出: Carol is 30 years old. Employee ID: E12345
多态示例
def greet(obj):
return obj.greet()
class Dog:
def greet(self):
return "Woof!"
class Cat:
def greet(self):
return "Meow!"
dog = Dog()
cat = Cat()
print(greet(dog)) # 输出: Woof!
print(greet(cat)) # 输出: Meow!
在这个多态示例中, greet 函数接受一个对象作为参数,并调用了该对象的 greet 方法。因为 Dog 和 Cat 都实现了 greet 方法,所以我们可以传入这两个类的实例。
2.3 Python高级特性解析
2.3.1 列表解析和生成器
列表解析提供了一种创建列表的简洁方式,而生成器则提供了按需计算值的能力。
列表解析示例
squares = [x**2 for x in range(10)]
print(squares) # 输出: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
生成器示例
def count_to_ten():
for i in range(1, 11):
yield i
counter = count_to_ten()
print(next(counter)) # 输出: 1
print(next(counter)) # 输出: 2
在这个例子中, count_to_ten 是一个生成器函数,可以逐个产生1到10之间的数字。
2.3.2 装饰器和上下文管理器
装饰器是一种用于修改或增强函数或类行为的设计模式,而上下文管理器用于简化资源管理,例如文件操作。
装饰器示例
def my_decorator(func):
def wrapper():
print("Something is happening before the function is called.")
func()
print("Something is happening after the function is called.")
return wrapper
@my_decorator
def say_hello():
print("Hello!")
say_hello()
# 输出:
# Something is happening before the function is called.
# Hello!
# Something is happening after the function is called.
在这个装饰器示例中, my_decorator 接收一个函数 func 作为参数,并返回一个新的函数 wrapper ,这个新函数在原函数执行前后添加了额外的操作。
上下文管理器示例
with open('example.txt', 'w') as f:
f.write('Hello, World!')
# 文件在with块结束后自动关闭
使用 with 语句可以确保文件在使用后正确关闭,这是上下文管理器的一个典型应用场景。
3. Python 2.x与Python 3.x的差异介绍
随着信息技术的飞速发展,编程语言也在不断演进,以适应新的需求和挑战。Python,作为一种广受青睐的编程语言,也在其生命周期中经历了多个版本的迭代。从Python 2.x到Python 3.x,这一跨越不仅仅是版本号的更新,而是对语言设计哲学和实用性的一次重大重构。本章节将详细解析Python 2.x与Python 3.x之间的主要差异,包括语法层面的变化、标准库和第三方库的兼容性问题,以及迁移策略和实践。
3.1 语法层面的差异
Python 3.x的推出,旨在解决Python 2.x系列中存在的一些问题,同时引入了一些新的语法特性。其中,最为显著的差异之一就是对print语句和Unicode字符串的处理方式。
3.1.1 print函数的变化
在Python 2.x中, print 是一个语句,而在Python 3.x中,它变成了一个函数。这意味着,在Python 3.x中使用 print 时需要加上括号。例如,在Python 2.x中,我们这样打印信息:
print "Hello, world!"
而在Python 3.x中,相同的代码变为:
print("Hello, world!")
这种改变提高了代码的可读性,并且增强了 print 函数的灵活性。 print 函数现在支持通过 sep 、 end 、 file 等参数来控制输出的行为。
3.1.2 Unicode字符串的区别
Python 2.x默认使用ASCII编码作为字符串的编码方式,而Python 3.x则将Unicode作为默认的字符串表示方法。这一变化意味着Python 3.x中的字符串是不可变的Unicode对象,从而解决了许多因编码不一致引发的问题。
在Python 2.x中,字符串和Unicode字符串的处理方式是这样的:
# Python 2.x
s = 'Hello World'
print type(s)
u = u'Hello World'
print type(u)
而在Python 3.x中,所有的字符串默认就是Unicode字符串:
# Python 3.x
s = 'Hello World'
print(type(s))
输出将会是:
<class 'str'>
这表明,在Python 3.x中, str 类型的对象是Unicode对象。
3.2 标准库和第三方库的兼容性
当从Python 2.x迁移到Python 3.x时,开发者面临的一个主要挑战就是标准库和第三方库的兼容性问题。许多在Python 2.x中广泛使用的库并没有及时提供Python 3.x的版本,或者即使提供了,也可能存在一些问题。
3.2.1 移除和修改的模块
Python 3.x在重构过程中移除了部分Python 2.x的模块,并对一些模块进行了修改。例如, urllib2 模块被拆分成了 urllib.request 和 urllib.error , queue 模块被重命名为 queue.Queue ,而且这些模块的API也有所调整。
开发者需要仔细阅读Python 3.x文档,了解哪些模块发生了变化,并适当地修改代码以适应这些变化。例如,使用 queue.Queue 替代Python 2.x中的 Queue.Queue :
# Python 3.x
from queue import Queue
q = Queue()
3.2.2 兼容性处理方法
为了帮助开发者处理兼容性问题,社区提供了各种工具和库。 2to3 是一个常用的工具,它自动地将Python 2.x代码转换为Python 3.x代码。此外, future 模块允许开发者在Python 2.x代码中引入Python 3.x的特性,以便逐步向新版本过渡。
使用 2to3 工具进行代码转换的一个例子:
2to3 -w script.py
这个命令会自动修改 script.py 文件,使其兼容Python 3.x,并覆盖原有文件。
3.3 迁移策略和实践
对于已经在使用Python 2.x的项目来说,迁移到Python 3.x并非一蹴而就的事情。它需要一个合理的迁移策略和对迁移过程中可能出现的问题有充分的认识。
3.3.1 代码迁移工具的介绍
Python社区已经开发了多种工具来帮助开发者平滑地进行迁移。除了前面提到的 2to3 之外, six 库提供了一个兼容层,可以同时支持Python 2.x和Python 3.x的代码。 modernize 是一个更为主动的迁移工具,它不仅可以帮助自动化转换代码,还提供了一些改进的建议。
six 库的使用示例:
from six import text_type
# Python 2.x code
print isinstance("string", basestring)
# Python 3.x code
print isinstance("string", text_type)
3.3.2 迁移过程中的常见问题
在迁移过程中,开发者可能会遇到各种问题,比如第三方库的不兼容、编码问题、语法差异以及测试用例的更新等。解决这些问题需要开发者对Python有深入的理解,并且需要有耐心逐步调整代码。
以下是一个在迁移过程中可能遇到的问题及其解决策略:
字符串编码问题
在Python 2.x中,开发者经常需要处理字符串编码,如UTF-8、ASCII等。在Python 3.x中,由于默认使用Unicode字符串,许多编码问题得以简化。但当从Python 2.x迁移到Python 3.x时,需要更新所有与编码相关的代码,确保在Python 3.x中它们的行为与Python 2.x相同。
代码示例:
# Python 2.x
s = 'Hello, world!'
print s.decode('utf-8')
# Python 3.x
s = 'Hello, world!'
print(s)
在Python 3.x中,字符串 s 默认就是Unicode字符串,因此不需要调用 decode 方法。
结语
Python 3.x的引入标志着Python语言的重大进步,而它与Python 2.x之间的差异无疑给许多项目带来了迁移的挑战。通过本章节的介绍,开发者应该对如何应对这些差异有了更深入的理解。在后续的章节中,我们将进一步探讨如何安装和配置Python环境,以及如何管理和使用Python的模块和包,为成功迁移和使用Python 3.x打下坚实的基础。
4. Python 2.7.3详细安装步骤
4.1 Python 2.7.3安装前的准备工作
4.1.1 系统兼容性检查
在开始安装Python 2.7.3之前,首先需要确认您的系统是否与Python 2.7.3兼容。Python 2.7.3是较为老旧的版本,一般而言,主流的操作系统都支持此版本。然而,为了保证安装顺利进行,您需要查看系统对Python 2.7.3的官方支持状态。对于Windows用户,可以通过Python官方网站下载页面查找支持的操作系统版本。对于Linux用户,大多数发行版的官方软件源都提供了Python 2.7.3的包,可以通过包管理工具查看和安装。
4.1.2 依赖库的安装和配置
Python 2.7.3可能需要一些依赖库来支持其运行或某些特定的功能模块。例如,在Linux系统中,可能需要安装如zlib、ssl、expat等库。在Windows系统中,通常安装包包含了所有必需的依赖,但某些模块可能需要额外的库。在安装Python之前,先确认这些依赖库是否已经存在或是否需要手动安装。
4.2 安装流程详解
4.2.1 下载Python 2.7.3
前往Python官方网站下载页面(https://www.python.org/downloads/release/python-2718/),选择适合您操作系统的Python 2.7.3安装包进行下载。对于Windows用户,下载可执行文件(例如python-2.7.18.msi)。对于Linux用户,下载对应的tar.gz文件。
4.2.2 配置和编译安装
对于Linux系统,解压下载的tar.gz文件:
tar -zxvf Python-2.7.18.tar.gz
cd Python-2.7.18
./configure --prefix=/usr/local
make
sudo make install
对于Windows用户,双击下载的msi安装包,按照安装向导完成安装。安装过程中,记得勾选将Python添加到系统PATH环境变量。
4.2.3 验证安装成功
安装完成后,打开命令行工具,输入以下命令以验证Python是否安装成功,并查看版本信息:
python -V
如果显示了Python 2.7.3的版本号,说明安装成功。
4.3 安装过程中的注意事项
4.3.1 环境变量的正确设置
Python的安装涉及到环境变量的配置,特别是PATH变量。确保Python的安装路径被添加到PATH中,以便可以在任何目录下使用Python。对于Windows用户,可以在安装过程中或通过系统属性来设置。对于Linux用户,可以在bash配置文件(如.bashrc)中添加如下行:
export PATH=/usr/local/bin:$PATH
4.3.2 可能遇到的错误及解决方案
在安装过程中,可能会遇到错误提示,最常见的问题包括编译错误(如缺少库)或权限问题。遇到这类问题时,需要根据错误信息上网搜索解决方案。常见解决方案包括安装缺失的库、使用管理员权限运行安装命令或检查系统环境变量配置。
请确保在解决任何问题后重新尝试安装或配置Python,以确保程序可以正常使用。对于问题的详细诊断和解决步骤,建议访问Python的官方文档或社区论坛获取帮助。
5. 环境变量配置方法
环境变量是操作系统中用来指定系统运行环境的一些参数,它们对操作系统本身和运行在操作系统上的程序都起着非常重要的作用。在Python开发和运行环境中,环境变量的配置尤其重要,它涉及到Python解释器的查找、第三方库的加载、执行路径的设定等多个方面。
5.1 环境变量的定义和作用
5.1.1 PATH变量的解释
PATH环境变量存储了系统查找可执行文件的目录列表。当我们在命令行中输入一个命令时,操作系统会在PATH变量指定的目录中查找对应的可执行文件,如果找到了,操作系统就会执行它。
在Python的上下文中,PATH变量会告诉系统到哪里去查找Python解释器。当我们通过命令 python 或 pip 时,系统会在PATH环境变量指定的路径中搜索这些命令。
# 示例:在Linux系统中查看PATH环境变量
echo $PATH
5.1.2 PYTHONPATH变量的重要性
PYTHONPATH环境变量用于指定额外的模块搜索路径。当Python解释器需要导入一个模块时,它会首先在内置的模块路径列表中查找,如果未找到,解释器会继续在PYTHONPATH环境变量指定的路径中查找。
# 示例:在Linux系统中查看PYTHONPATH环境变量
echo $PYTHONPATH
设置PYTHONPATH可以使得Python能够在非标准目录中找到模块,这对于大型项目或第三方库不在标准目录下时尤为重要。
5.2 配置环境变量的步骤
5.2.1 通过图形界面配置
在Windows操作系统中,用户可以通过“系统属性”来配置环境变量。具体步骤如下:
- 右键点击“此电脑”或“我的电脑”,选择“属性”。
- 点击“高级系统设置”,然后选择“环境变量”按钮。
- 在“系统变量”区域中找到PATH变量,点击“编辑”,然后添加新的路径。
- 为了添加PYTHONPATH变量,点击“新建”按钮并输入路径值。
- 确认所有的对话框以保存设置。
5.2.2 通过命令行配置
在类Unix系统中,可以通过命令行来编辑环境变量。使用 export 命令可以设置临时的环境变量,对于永久性设置,需要将相应的命令添加到用户主目录下的 .bashrc 或 .zshrc 等配置文件中。
# 示例:在bash shell中设置PATH变量
export PATH=$PATH:/path/to/new/directory
# 示例:在zsh shell中设置PYTHONPATH变量
export PYTHONPATH=$PYTHONPATH:/path/to/your/modules
# 将设置永久保存,编辑~/.bashrc或~/.zshrc
echo 'export PATH=$PATH:/path/to/new/directory' >> ~/.bashrc
5.3 环境变量配置示例与实践
5.3.1 配置单用户环境变量
对于只有一个用户的计算机系统,环境变量通常只需要配置一次,并且针对单个用户。在Linux系统中,这意味着需要在 .bashrc 或 .zshrc 文件中添加相应的 export 命令。
# 示例:配置单个用户的环境变量
echo 'export PATH=$PATH:/home/username/bin' >> ~/.bashrc
echo 'export PYTHONPATH=$PYTHONPATH:/home/username/my_modules' >> ~/.bashrc
source ~/.bashrc
5.3.2 配置多用户环境变量
如果在一个有多个用户的系统上工作,需要为所有用户配置环境变量,那么就需要编辑全局的环境变量文件,如 /etc/profile 。
# 示例:配置所有用户的环境变量
sudo echo 'export PATH=$PATH:/usr/local/bin' >> /etc/profile
sudo echo 'export PYTHONPATH=$PYTHONPATH:/usr/local/lib/python2.7' >> /etc/profile
然后,对于每一个用户,当他们登录时,上述 /etc/profile 文件中添加的变量就会自动生效。当然,也可以在用户各自的 .bash_profile 或 .profile 文件中进行配置,以覆盖或添加新的环境变量。
通过上述步骤,可以确保Python开发环境的正确配置,提高开发效率,同时确保项目的可移植性和可维护性。在实际操作过程中,配置环境变量看似简单,但错误的配置可能会导致程序运行出错,因此需要小心谨慎。
6. Python模块搜索路径(sys.path)
6.1 sys.path的作用与结构
6.1.1 sys.path的组成元素
sys.path 是Python解释器用于定位模块的路径列表。它决定了Python解释器在何处查找用户需要导入的模块。当Python解释器启动时,它会根据以下顺序创建 sys.path 列表:
- 包含输入脚本的目录(或者当前目录)。
-
PYTHONPATH(一个包含目录名的列表,与shell变量PATH类似)。 - 依赖于安装方式的默认路径,这些路径由Python的安装过程定义。
sys.path 是一个列表,可以像操作普通列表那样对它进行操作。每个元素都是一个字符串,代表一个目录路径。在Python中可以通过以下代码查看当前的 sys.path :
import sys
print(sys.path)
6.1.2 模块导入时路径搜索规则
当Python解释器尝试导入一个模块时,它会按照以下步骤搜索:
- 检查
sys.path列表中的每个目录,以确定是否存在一个符合导入语句中指定名称的文件或目录。 - 如果找到一个目录,则搜索该目录下是否存在
__init__.py文件,这个文件将目录标记为Python包。 - 如果找到符合要求的
__init__.py文件,则解释器会导入该目录下的__init__.py,将它视为一个包。 - 然后解释器会在
__init__.py中搜索指定的模块名,并导入对应的.py文件。 - 如果在
sys.path中找不到模块,解释器将抛出ModuleNotFoundError异常。
6.2 如何管理和修改sys.path
6.2.1 动态添加模块路径
有时你可能需要在代码运行时动态地添加模块路径,以便导入不在 sys.path 中的模块。这可以通过以下方式实现:
import sys
# 添加单个路径
sys.path.append('/path/to/directory')
# 添加多个路径
sys.path.extend(['/path/to/another/directory', '/path/to/yet/another'])
6.2.2 sys.path修改的最佳实践
修改 sys.path 时,需谨慎操作,因为这可能会影响到代码的可移植性。以下是一些最佳实践:
- 尽可能少地修改
sys.path。如果可能,避免在代码中硬编码路径。 - 使用相对导入来引用同一包内的模块。
- 使用虚拟环境可以隔离项目依赖,避免对全局
sys.path造成影响。 - 如果需要添加模块路径,请使用
append或extend方法,而不是直接修改sys.path列表。
6.3 sys.path在项目中的应用
6.3.1 包的组织和模块的导入
在大型项目中,合理地组织包和模块,能够有效地管理代码结构。 sys.path 能够帮助你在项目中灵活地添加或修改模块搜索路径,例如:
# 假设你有一个模块位于 project根目录/your_package/your_module.py
# 在一个脚本中,你可以这样做:
sys.path.insert(0, '/path/to/project根目录')
import your_package.your_module as my_module
这允许你从项目外部的脚本或命令行界面导入模块。
6.3.2 解决模块冲突的策略
在开发中经常会遇到模块命名冲突的问题。当Python在 sys.path 中搜索模块时,它会按照 sys.path 中路径的顺序来导入第一个匹配的模块。因此,一个有效避免冲突的策略是调整 sys.path 中条目的顺序:
# 将当前工作目录移动到sys.path的首位,以确保从当前工作目录导入模块
import sys
sys.path.insert(0, '.')
另一种解决冲突的策略是使用相对导入,例如:
# 在 your_package 目录下的一个模块中
from . import another_module
最后,如果你在一个包内导入其他模块时遇到冲突,可以使用完整的包路径来明确指定导入哪个模块:
# 从一个子模块导入另一个子模块
import your_package.another_module
通过合理管理和使用 sys.path ,你可以更灵活地控制模块的导入和管理项目依赖,从而提高开发效率和代码的可维护性。
7. Python-2.7.3包的内容概述
Python作为一种解释型、高级编程语言,其庞大的标准库和丰富的第三方库构成了Python生态系统的强大后盾。而包是Python中组织代码和模块的一种方式,它使得项目结构更为清晰,代码的重用和共享变得更加容易。
7.1 标准库的分类与功能
7.1.1 内置函数和常量
Python-2.7.3的标准库包含了许多内置函数和常量,这些是无需导入任何模块即可直接使用的。例如, print 、 len 、 range 等是内置函数,而 None 、 True 、 False 等则是内置常量。这些函数和常量极大地提高了开发效率。
7.1.2 核心模块的介绍
核心模块包括了用于操作文件的 os 、 sys ,处理正则表达式的 re ,操作网络协议的 httplib ,以及用于数据操作的 json 等模块。它们为Python提供了广泛的功能,使得开发者可以在不安装第三方库的情况下完成大量任务。
示例:使用内置模块 sys 输出Python版本信息
import sys
print("Python version:", sys.version)
7.2 第三方库的获取与使用
7.2.1 使用pip安装第三方库
虽然Python-2.7.3已经不再维护,但许多第三方库仍可使用。安装第三方库通常使用pip包管理工具。这里演示如何使用pip安装一个第三方库,比如 requests ,这是常用的HTTP库。
pip install requests
7.2.2 配置虚拟环境隔离第三方库
为了避免包之间可能出现的版本冲突,推荐使用虚拟环境来管理项目依赖。 virtualenv 是一个常用的工具,它允许你创建一个包含指定Python版本的独立环境。
# 创建虚拟环境
virtualenv myenv
# 激活虚拟环境
source myenv/bin/activate
7.3 强调向Python 3.x迁移的建议
7.3.1 Python 3.x的优势和发展趋势
尽管Python 2.7.3是一个稳定且广泛使用的版本,但Python 3.x在语言特性、性能和安全等方面都有了显著的提升。Python 3.x对Unicode的支持更加友好,且许多新特性的加入使得代码更加简洁易读。
7.3.2 未来向Python 3.x迁移的路径规划
迁移至Python 3.x是一个不可回避的趋势。为了平稳过渡,建议开发者保持对Python 3.x的关注和学习,并在现有项目中逐步引入Python 3.x的特性。此外,可以使用 2to3 工具帮助自动化转换代码。
pip install 2to3
# 使用2to3工具转换代码
2to3 -w /path/to/code
在项目中,可以使用条件导入来兼容不同版本的Python:
try:
import urllib.request as urllib2
except ImportError:
import urllib2
以上内容详细介绍了Python-2.7.3包的组成及内容,包括标准库的功能和核心模块,如何获取和使用第三方库,并强调了向Python 3.x迁移的必要性和实现路径。这些知识将帮助开发者在维护旧项目的同时,也为未来的技术升级做好准备。
简介:Python 2.7.3是一个里程碑式的Python版本,虽然现在被Python 3.x取代,但作为学习基础仍具有重要价值。本文介绍了Python语言的基础知识,Python 2.x与Python 3.x的主要差异,提供了Python 2.7.3的详细安装指南,包括下载、解压、配置、编译、安装以及环境变量的设置。同时,解释了Python模块搜索路径的概念,并概述了Python-2.7.3包包含的内容。本教程针对希望系统学习和使用Python 2.7.3的初学者,但强调了转向Python 3.x的必要性。
2131

被折叠的 条评论
为什么被折叠?



