原理图框图_第四讲 控制系统的方框图

本文详细介绍了控制系统方框图的概念、基本元素及其绘制方法,包括方框、比较点、分支点等,阐述了系统方框图在表示系统结构和信号流向上的重要性。此外,还讲解了前向通路传递函数、反馈回路传递函数、开环和闭环传递函数等关键术语,并举例说明了方框图的变换和简化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

a9a0014dea1310103af32b9c9c7198eb.png
金鸡一唱天下白:第三讲 控制系统的复域数学模型(传递函数)​zhuanlan.zhihu.com
9ec5bf33628835e81006bb0f49fef624.png
自动化人 - 知乎​www.zhihu.com
5293ca65fc14c4edd2369b5fcd1d00d2.png

在控制工程中,为了便于对系统进行分析和设计,常将各元件在系统中的功能及各部分之间的联系用图形来表示,即方框图和信号流图

由具有一定函数关系的环节组成的,并标明信号流向的系统的方框图,称为系统的结构图。系统的结构图实质上是系统原理图与传递函数两者的综合。可以清楚地表示出系统的结构和各部分信号的流向。

4.1方框图

控制系统的方块图是系统各元件特性、系统结构和信号流向的图解表示法。

方框图也称方块图或结构图,具有形象和直观的特点。系统方框图是系统中各元件功能和信号流向的图解,它清楚地表明了系统中各个环节间的相互关系。构成方框图的基本符号有四种,即信号线、比较点、传递环节的方框和引出点。

32684c268303254de36cd8f3c058ee71.png

方框图元素

(1)方框(Block Diagram):表示输入到输出单向传输间的函数关系。方框图也称方块图或结构图,具有形象和直观的特点。系统方框图是系统中各元件功能和信号流向的图解,它清楚地表明了系统中各个环节间的相互关系。构成方框图的基本符号有四种,即信号线、比较点、传递环节的方框和引出点。

信号线:带有箭头的直线,箭头表示信号的流向,在直线旁标记信号的时间函数或象函数。

(2)比较点(合成点、综合点)Summing Point

两个或两个以上的输入信号进行加减比较的元件。“+”表示相加,“-”表示相减。“+”号可省略不写。

注意:进行相加减的量,必须具有相同的量刚。

(3)分支点(引出点、测量点)Branch Point

表示信号测量或引出的位置注意:同一位置引出的信号大小和性质完全一样。

4.2系统方框图的绘制

对于一个系统在清楚系统工作原理及信号传递情况下,可按方框图的基本连接形式,把各个环节的方框图连接在一起,构成系统方框图。

(1)考虑负载效应分别列写系统各元部件的微分方程或传递函数,并将它们用方框(块)表示。

(2)根据各元部件的信号流向,用信号线依次将各方块连接起来,便可得到系统的方块图。

系统方块图-也是系统数学模型的一种。

e28fde5f4a5bc768edccc84cf6d5cf24.png

例2-5 图中为一无源RC网络。选取变量如图所示,根据电路定律,写出其微分方程组为

4fd4b45a58504180b4c7e8abaa4b7e2c.png

fc32b99ce2d7929b884f5dfdd13ea531.png

几个基本概念及术语

7b479da0aae82ffac1185cfa0c7ad204.png

(1)前向通路传递函数

假设N(s)=0 , 打开反馈后,输出C(s)与R(s)之比。等价于C(s)与误差E(s)之比

021108625ae7dfa9a91979e6a877550c.png

(2)反馈回路传递函数 假设N(s)=0 主反馈信号B(s)与输出信号C(s)之比。

7a6fc1af066ddbb3211059d6d5d0c857.png

(3)开环传递函数 Open-loop Transfer Function

假设N(s)=0 主反馈信号B(s)与误差信号E(s)之比。

61e83e888e8a94f0bd904ae71f5108ea.png

(4)闭环传递函数 Closed-loop Transfer Function 假设N(s)=0

输出信号C(s)与输入信号R(s)之比。

a382e5417652f911f516c1659a22ec4d.png

推导:因为

b1e0fbe731e7bc118852b510d6dc9196.png

右边移过来整理得

dd320596ed614871054db276d4ce7a8a.png

请记住

4549525383e01dfc6417f9a0ba0229c0.png

(5)误差传递函数

假设N(s)=0 误差信号E(s)与输入信号R(s)之比 。

9c47407b2b9f695e66685fcbb0a0ec1f.png

代入上式,消去G(s)即得:

15b31a330b628c8f576662edb54edea6.png

(6)输出对扰动的传递函数 假设R(s)=0

4b1494fff21f8b031cd17f34de4dc1ce.png

083bb0da0429d7d2c320714b625b635a.png
输出对扰动的结构图

利用下列公式,

d9d93139ad5edac0624ee94c324fcbb6.png

直接可得:

2bea1f86c36d0c381b5385abd0228ea9.png

(7)误差对扰动的传递函数 假设R(s)=0

28d05fd7fd86a63087509a24a94c6c28.png
误差对扰动的结构图

773518692002fa6b0bc59452557dd2a9.png

线性系统满足叠加原理,当控制输入R(s)与扰动N(s)同时作用于系统时,系统的输出及误差可表示为:

741c83e1eeb7987add5db36cef11fd20.png

b151f04ebb3619ba5b015305156d98e4.png

注意:由于N(s)极性的随机性,因而在求E(s)时,不能认为利用N(s)产生的误差可抵消R(s)产生的误差。

4.3环节间的连接

环节的连接有串联、并联和反馈三种基本形式。

1.串联 :在单向的信号传递中,若前一个环节的输出就是后一个环节的输入,并依次串接如图2-32所示,这种联接方式称为串联。

n个环节串联后总的传递函数 :

即环节串联后总的传递函数等于串联的各个环节传递函数的乘积。

b05cfd6e5cc0e76deeb7eda4e14730fb.png

b12a47f2e6806d3ad5d55415181f4fcd.png

2.并联 :若各个环节接受同一输入信号而输出信号又汇合在一点时,称为并联。

db5af4522fcdda86e83bf98b1ad97ae7.png

3.反馈:若将系统或环节的输出信号反馈到输入端,与输入信号相比较,就构成了反馈连接,如图所示。如果反馈信号与给定信号极性相反,则称负反馈连接。反之,则为正反馈连接,若反馈环节H(s)=1称为单位反馈。

e43f96feadbc34b8e8a5ed732cd3271b.png

反馈连接后,信号的传递形成了闭合回路。通常把由信号输入点到信号输出点的通道称为前向通道;把输出信号反馈到输入点的通道称为反馈通道。

对于负反馈连接,给定信号r(t)和反馈信号b(t)之差,称为偏差信号e(t) 即

25089f10215bf93f51ca81f9cf1b3923.png

通常将反馈信号B(s)与误差信号E(s)之比,定义为开环传递函数,即

e621beeac91c8534ad114ac7697eb6e5.png

4.4方框图的变换和简化

有了系统的方框图以后,为了对系统进行进一步的分析研究,需要对方框图作一定的变换,以便求出系统的闭环传递函数。

方框图的变换应按等效原则进行。所谓等效,即对方框图的任一部分进行变换时,变换前、后输入输出总的数学关系式应保持不变。除了前面介绍的串联、并联和反馈连接可以简化为一个等效环节外,还有信号引出点及比较点前后移动的规则。

方块图的绘制

例2-7化简图(a)所示系统方框图,并求系统传递函数

bf2c6b689d248759c603e3e01f698f40.png

例2-8 试化简如图2-37 (a)所示系统的方框图,并求闭环传递函数。

48353f0aa9bb57b55464fd59ce9f8f0a.png

a51eac21e2e64b28f15075e1fa4440e3.png

图2-37 (a)是一个交错反馈多路系统,采用引出点后移或前移,比较点前移等,逐步变换简化,可求得系统的闭环传递函数为

图2-37 方框图的变换与简化

12204ad01dee596843ba86d7251e7f06.png

6个基本术语

前向通路传递函数、

反馈传递函数、

开环传递函数、

闭环传递函数、

误差(对输入)传递函数、

输出对扰动传递函数

金鸡一唱天下白:第五讲 信号流图​zhuanlan.zhihu.com
9ec5bf33628835e81006bb0f49fef624.png
自动化人 - 知乎​www.zhihu.com
5293ca65fc14c4edd2369b5fcd1d00d2.png

注:版权属笔者所有,如需转载请务必联系!

最后说一句:码字不易,若此文对你有启发,收藏前请点个赞、点点喜欢,是对知乎主莫大的支持!!

参考

1.^如有侵犯您的权益,请联系作者删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值