用计算机算重积分,北京邮电大学计算机学院高等数学重积分的计算.ppt

这篇博客详细讲解了如何使用直角坐标和极坐标计算曲顶柱体的体积,包括X-型区域和Y-型区域的积分方法,并通过多个例子展示了积分顺序的交换和换元法的应用。内容涵盖了从简单的几何体到复杂的曲面,还涉及到了在概率论和工程中的实际应用,如球体体积和反常积分的计算。此外,还强调了积分区域划分、对称性和积分顺序选择在简化计算过程中的重要性。
摘要由CSDN通过智能技术生成

北京邮电大学计算机学院高等数学重积分的计算

第二节 曲顶柱体体积的计算 一、利用直角坐标计算二重积分 当被积函数 说明: (1) 若积分区域既是X–型区域又是Y –型区域 , 例2. 计算 例3. 计算 例4. 计算 例5. 交换下列积分顺序 例6. 计算 二、利用极坐标计算二重积分 设 例7. 计算 注: 例8. 求球体 *三、二重积分换元法 面积元素的关系为 例9. 计算 例10. 计算由 例11. 试计算椭球体 内容小结 极坐标系情形: 若积分区域为 (3) 计算步骤及注意事项 思考与练习 2. 交换积分顺序 * *三、二重积分的换元法 一、利用直角坐标计算二重积分 二、利用极坐标计算二重积分 二重积分的计算法 第八章 设曲顶柱的底为 任取 平面 故曲顶柱体体积为 截面积为 截柱体的 同样, 曲顶柱的底为 则其体积可按如下两次积分计算 曲顶柱体体积的计算利用了“平行截面面积已知”,化为二次积分。 例1. 求两个底圆半径为R 的直角圆柱面所围的体积. 解: 设两个直圆柱方程为 利用对称性, 考虑第一卦限部分, 其曲顶柱体的顶为 则所求体积为 且在D上连续时, 由曲顶柱体体积的计算可知, 若D为 X – 型区域 则 若D为Y –型区域 则 均非负 在D上变号时, 因此上面讨论的累次积分法仍然有效 . 由于 为计算方便,可选择积分序, 必要时还可以交换积分序. 则有 (2) 若积分域较复杂,可将它分成若干 X-型域或Y-型域 , 则 其中D 是直线 y=1, x=2, 及 y=x 所围的闭区域. 解法1. 将D看作X–型区域, 则 解法2. 将D看作Y–型区域, 则 其中D 是抛物线 所围成的闭区域. 解: 为计算简便, 先对 x 后对 y 积分, 及直线 则 其中D 是直线 所围成的闭区域. 解: 由被积函数可知, 因此取D 为X – 型域 : 先对 x 积分不行, 说明: 有些二次积分为了积分方便, 还需交换积分顺序. 解: 积分域由两部分组成: 视为Y–型区域 , 则 其中D 由 所围成. 解: 令 (如图所示) 显然, 对应有 在极坐标系下, 用同心圆 r =常数 则除包含边界点的小区域外,小区域的面积 在 内取点 及射线 ? =常数, 分划区域D 为 即 极坐标下二重积分化二次积分 则 特别, 对 若 f ≡1 则可求得D 的面积 思考: 下列各图中域 D 分别与 x , y 轴相切于原点,试 答: 问 ? 的变化范围是什么? (1) (2) 其中 解: 在极坐标系下 原式 的原函数不是初等函数 , 故本题无法用直角 由于 故 坐标计算. 利用例7可得到一个在概率论与数理统计及工程上 非常有用的反常积分公式 事实上, 当D 为 R2 时, 利用例7的结果, 得 ① 故①式成立 . 被圆柱面 所截得的(含在柱面内的)立体的体积. 解: 设 由对称性可知 定积分换元法 满足 一阶导数连续; 雅可比行列式 (3) 变换 则 定理: 变换: 是一一对应的 , 二重积分的换元公式: 例如, 直角坐标转化为极坐标时, 其中D 是 x 轴 y 轴和直线 所围成的闭域. 解: 令 则 所围成的闭区域 D 的面积 S . 解: 令 则 解: 由对称性 令 则D 的原象为 的体积V. (1) 二重积分化为累次积分的方法 直角坐标系情形 : 若积分区域为 则 若积分区域为 则 则 (2) 一般换元公式 且 则 在变换 下 ? 画出积分域 ? 选择坐标系 ? 确定积分序 ? 写出积分限 ? 计算要简便 域边界应尽量多为坐标线 被积函数关于坐标变量易分离 积分域分块要少 累次积好算为妙 图示法 不等式 ( 先积一条线, 后扫积分域 ) 充分利用对称性 应用换元公式 1. 设 且 求 提示: 交换积分顺序后, x , y互换 * * * * *

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值