P.S.
大作业系列之五(一二三为手写稿)
数学分析下列比较简单的内容
转载请注明出处
1 多重积分的概念与基本性质
1.1 多重积分的定义
对自然数
n(n>1)
,记集合
T
将每个区间 [aj,bj) 划分成有限个不重叠的左闭右开的子区间 Ij ,记
则所有的 C 可以看做是 T 的一个划分(分割),即
记 Ci 的直径为 diamCi .划分 C 的细度定义为
设 f(x1,x2,⋯,xn) 为定义在 T 上的有界函数,对于任意
则称函数 f 黎曼可积,且
称为函数 f 在
利用以上定义的
给出超 n 维体积定以后,也可以给出另一种形式三重积分数学定义.
设
∀ϵ>0,∃δ>0,λ<δ 使得 ∀Xi∈Di 都有
则称 f 在
若函数
f
在
1.2 多重积分的性质
若函数
f
和
线性性
对于任意常数 a,b ,则
∫D(af+bg)=a∫Df+b∫Dg保序性
若在 D 上满足
f≤g ,则
∫Df≤∫Dg区域可加性
若 D 可分成两个无公共内点的区域
D1,D2 则 f 在D 上可积的充要条件是在 D1 和 D2 上均可积,且
∫Df=∫D1f+∫D2f乘积可积性
函数 fg 在 D 上仍可积
绝对可积性
函数|f|在
D 上可积,且
∣∣∣∫Df∣∣∣≤∫D|f|
积分中值定理
若 f 在闭区域
D 中连续,则存在 X0∈D ,记 V(D) 为 D 的超n 维体积,则
∫Df(X)dnx=f(X0)V(D)
1.3 多重积分的存在定理
将定积分的达布定理和勒贝格定理拓展到多重积分.
设函数
f(x1,x2,⋯,xn)
为定义在可求超
n
维体积的有界闭区域
则有:
若 f 在
D 上可积,则 f 在D上必有界.证明 反证法.设
f 在 D 上无界,则对于任何D 的分割 C ,必定存在某个子区域Dk ,使得 f 在Dk 上无界.在 i≠k 的各个子区域上取定 Xi ,并令
G=∣∣∣∣∑i=1,i≠knf(Xi)V(Di)∣∣∣∣
∀M>0,∃Xk∈Dk 使得
|f(Xk)|>M+GV(Dk)
则
∣∣∣∑i=0mf(Xi)V(Di)∣∣∣≥|f(Xk)V(Dk)|−∣∣∣∣∑i=1,i≠knf(Xi)V(Di)∣∣∣∣>M+GV(Dk)V(Dk)−G=M
无论分割的细度 ||C|| 多么小,上式总成立,这与 f 在D 上可积矛盾.达布定理
对于函数 f ,
lim||C||→0S(C)=J¯,lim||C||→0s(C)=J−J¯=inf{S(C)|∀C},J−=sup{s(C)|∀C}
其中 J¯ 和 J− 分别称为上积分和下积分.函数 f 可积的充要条件是
lim||C||→0S(C)=lim||C||→0s(C)⇔J¯=J−
证明 这里先证明lim||C||→0S(C)=J¯,另一个结论同理.根据下确界的定义, ∀ε>0,∃C′:D′1,D′2,⋯,D′m′ 使得
S(C′)<J¯+ε2
任取分割 C:D1,D2,⋯,D′m 满足
||C||=max1≤i≤mV(Di)<min{V(D′1),V(D′2),⋯,V(D′m′),ε2nm′ω}
将分割 C 和C′ 合并成一个新的分割 C∗ ,有
0≤S(C)−S(C∗)≤nm′ωδ
ω 为函数 f 的振幅,由于
0≤S(C)−J¯≤(S(C)−S(C∗))+(S(C∗)−S(C′))+(S(C′)−J¯)S(C∗)−S(C′)≤0
因此
S(C)−J¯≤(S(C)−S(C∗))+(S(C′)−J¯)≤nm′ωδ+ε2<ε
证毕.函数 f 的可积性的充要条件的证明显然.函数
f 可积的充要条件是对于任意的 ε>0 ,存在分割 C ,使得
S(C)−s(C)<ε 若函数 f 连续,则
f 必定可积.设函数 f 为有界函数,
f 可积的充要条件是不连续点集为零测集.证明 这里不妨设函数 f 的不连续点全部落在
n 维空间的一个光滑 n 维超曲面上.对于任意的ε>0 ,记该超曲面的面积为 p ,用个边长为 ε 的 n 维超立方体可以将这个曲面完全包含在其中.此部分记为[pεn−1]+1 Δ,其 n 维超体积为
W≤([pεn−1]+1)εn≤(p+εn)ε
将区域 D 分成两部分:D1=D∩Δ,D2=D−D1 ,由于 f 在D2 上连续,则 f 在D2 上可积,则存在 D2 上的分割 C2 ,满足
S(C2)−s(C2)<ε
记MΔ=supX∈Δf(X),mΔ=infX∈Δf(X), C 表示由C2 和 Δ 的边界组成的分割,则有
S(C)−s(C)<[S(C2)−s(C2)]+(MΔ−mΔ)W<ε+ωW≤(a+pω+ωεn)ε
其中 ω 为函数 f 的振幅.由于f 为有界函数,则 ω 为一有限值,因而 f 在D 上可积.若 f 在
D 上可积, ∀ε>0,∀k∈N∗,∃C:D1,D2,⋯,Dm 使得
∑i=1mωiV(Di)<εk
ωi 表示 f 在Di 上的振幅.记其不连续点的集合为 E(f) ,则有E(f)=∪∞k=1E1k,对于不连续点 X 的振幅ω(X) ,存在 k′∈N∗ 满足ω(X)≥1k′因而能取到
ωi≥1n
用 ∑′ 表示对 E1k∩Di 不为空的那些 i 求和,则有
εn>∑i=1mωiV(Di)≥∑′ωiV(Di)≥1n∑′V(Di)∑′V(Di)<ε
即 E(f) 的 n 维超体积为0 ,因而测度为 0 ,证毕.
2 多重积分的计算
2.1 多重积分的计算顺序
理论上,对于
若函数
f
在由下列不等式所确定的有界区域
其中 x′1 和 x′′1 是常数, x′2,x′′2,⋯,x′n,x′′n ,是连续函数,则相应的多重积分可以化为累次积分,即
在其他的顺序下,同样成立.
2.2 多重积分的换元
设向量值函数
F:D→D∗
将可求超
n
维体积的有界区域
F 在
证明 将 D 分成
由Taylor公式展开并略去高阶无穷小后有
根据中值定理有
其中 Xi¯¯¯¯∈Di ,记 Φi¯¯¯¯=(ϕ1(Xi¯¯¯¯),ϕ2(Xi¯¯¯¯),⋯,ϕn(Xi¯¯¯¯))∈D∗ ,则
由于 F 的连续性,当
2.3 球坐标变换
根据球坐标变换公式
将直角坐标 (x1,x2,⋯,xn) 变换为极坐标 (r,ϕ1,ϕ2,⋯,ϕn−1) .特别地,
证明 第一式显然,很容易计算.对第二式,有
3 多重积分的实例
例1 计算
>∫⋯∫Ddx1dx2⋯ xn>
其中D={x1+x2+⋯+xn≤1xi≥0,i=1,2,⋯,n.解1 转化成累次积分再逐层计算.
>=====∫⋯∫Ddx1dx2⋯ xn∫a0dx1∫a−x10dx2∫a−x1−x20dx3⋯∫a−x1−x2−⋯−xn−10dxn∫a0dx1∫a−x10dx2∫a−x1−x20dx3⋯∫a−x1−x2−⋯−xn−2011!(a−x1−x2−⋯−xn−1)dxn−1∫a0dx1∫a−x10dx2∫a−x1−x20dx3⋯∫a−x1−x2−⋯−xn−3012!(a−x1−x2−⋯−xn−2)dxn−2⋯∫a01(n−1)!(a−x1)n−1ann!>
解2 同样需要转化成累次积分,但是与上一个解法不同,这里做代换.记
>In(a)=∫a0dx1∫a−x10dx2∫a−x1−x20dx3⋯∫a−x1−x2−⋯−xn−10dxn>
在右端的累次积分做代换 x1=ay1,x2=ay2,⋯,xn=ayn ,则
>In(a)=anIn(1)In(1)=∫10dx1(In−1(1−x1))=In−1(1)∫10(1−x1)n−1dx1=1nIn−1(1)>
因而
>In(a)=ann!>例2 计算
>∫⋯∫Dx1+x2+⋯+xn−−−−−−−−−−−−−−√dx1dx2⋯ xn>
其中D={x1+x2+⋯+xn≤1xi≥0,i=1,2,⋯,n.解 先换元,再将其化为累次积分,则有
>x1x2⋮xn−1xn=y1(1−y2)=y1y2(1−y3)=y1y2⋯yn−1(1−yn)=y1y2⋯yn,0≤yi≤1,(i=1,2,⋯,n),x1+x2+⋯+xn=y1>
>∣∣∣∣∣∣∣∣1−y2y2(1−y3)⋮y2y3⋯yn−1(1−yn)y2y3⋯yn−y1y1(1−y3)y1y3⋯yn−1(1−yn)y1y3⋯yn−y1y2⋯⋯y1y2⋯yn−2(1−yn)y1y2⋯yn−2yn−y2y3⋯yn−1y1y2⋯yn−1∣∣∣∣∣∣∣∣=yn−11yn−22⋯yn−1>
>==∫⋯∫Dx1+x2+⋯+xn−−−−−−−−−−−−−−√dx1dx2⋯ xn∫10∫10⋯∫10yn−121yn−22⋯yn−1dy1dy2⋯yn2(n−1)!(2n+1)>例3 计算 n 维角锥体积
>∫⋯∫Ddx1dx2⋯ xn>
其中D={x1a1+x2a2+⋯+xnan≤1ai>0,xi≥0,i=1,2,⋯,n.解 令 x1=a1y1,x2=a2y2,⋯,xn=anyn ,根据例1的结果有
>∫⋯∫Ddx1dx2⋯ xn=a1a2⋯an∫⋯∫D∗dy1dy2⋯ yn=a1a2⋯ann!>例4 计算 n 维超球体的体积
>∫⋯∫x21+x22+⋯+x2n≤a2dx1dx2⋯ xn>
解1 利用 n 维球坐标计算.
>==∫⋯∫x21+x22+⋯+x2n≤a2dx1dx2⋯ xn∫10dr∫π0dϕ1∫π0dϕ2⋯∫π0dϕn−2∫2π0rn−1sinn−2ϕ1sinn−3ϕ2⋯sinϕn−2dϕn−1⎧⎩⎨πmm!a2m,2⋅(2π)m(2m+1)!!a2m+1,n=2mn=2m+1>
解2 利用代换法,令 x1=ay1,x2=ay2,⋯,xn=ayn
>Vn(a)=∫⋯∫x21+x22+⋯+x2n≤a2dx1dx2⋯ xn=anVn(1)>
>Vn(1)=∫1−1dx1(In−1(1−x21−−−−−√))=In−1(1)∫1−1(1−x21)n−12dx1=2Vn−1(1)∫π20sinnϕdϕV1(1)=2>可以得到同样的结果
>Vn(a)=⎧⎩⎨πmm!a2m,2⋅(2π)m(2m+1)!!a2m+1,n=2mn=2m+1>例5 计算 n 维圆锥的体积,边界方程
>x21a21+x22a22+⋯+x2n−1a2n−1=x2na2n,xn=an>
解 利用广义球坐标变换的思想,即
>x1x2⋮xn−2xn−1xn=a1rcosϕ1=a2rsinϕ1cosϕ2=an−2rsinϕ1sinϕ2⋯sinϕn−3cosϕn−2=an−1rsinϕ1sinϕ2⋯sinϕn−3sinϕn−2=anx′n>
则
>V=a1a2⋯an∫10rn−2dr∫π0sinn−3ϕ1dϕ1⋯∫π0sinϕn−3dϕn−3∫2π0dϕn−2∫1rdx′n=⎧⎩⎨⎪⎪a1a2⋯an(2π)m−1(2m−1)!!m,a1a2⋯anπmm!(2m+1),n=2mn=2m+1>
参考文献
杨小远,孙玉泉,杨卓琴,薛玉梅编著.工科数学分析分析教程(下册)[M].北京:科学出版社,2012:27-29
杨小远,孙玉泉,杨卓琴,薛玉梅编著.工科数学分析分析教程(上册)[M].北京:科学出版社,2012:190-191,210-214
费定晖,周学圣编演.吉米多维奇数学分析习题集题解6[M].济南:山东科学技术出版社,2012:106-111
wikipedia.Multiple integral[EB/OL].2017-05-30.
https://en.wikipedia.org/wiki/Multiple_integral