同指数幂相减公式_别忽视对数运算中的小公式,关键时刻有大用处,高中数学_高考数学复习...

本文介绍了高中数学中对数运算的一些关键公式及其应用,强调了当幂的指数部分为对数时,结果等于对数的真数。通过实例解析了如何利用这些公式解决对数问题,包括将幂转换为对数形式,以及处理底数为相反数的情况。同时,文章提到了对数公式的两种常见用法,并提供了相关习题的解答策略,强调了注意对数真数必须大于0的条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

别忽视对数运算中的小公式,关键时刻有大用处,高中数学_高考数学复习。

幂的指数部分是一个同底的对数时,结果等于对数的真数。使用这个公式时要注意,幂的指数部分必须是一个纯对数,即必须是一个单独形式的对数,对数的前面不能出现系数,也不能出现别的项。

01、幂的底数是根号3,对数的底数是3,只需把根号3化成分数指数幂的形式,即可使两个底数相同,即都为3,详细过程如下。

254806f8ddd4268e7ee44a1abf0bbbce.png

02、幂的指数部分是两项的和,不是一个单独的对数,故不能使用上面的对数公式,只需要使用同底数幂乘法的逆用公式稍加变形即可,详细如下:

a8e29da6cf851c3a977ee0299c5b4751.png

03、只要你能观察出幂的底数与对数的底数互为相反数这一特点,你就成功了一半,剩下的任务就是变形,使之符合上面的公式即可。03、只要你能观察出幂的底数与对数的底数互为相反数这一特点,你就成功了一半,剩下的任务就是变形,使之符合上面的公式即可。

0a4d61a4ff4e6647174528459da3b5f5.png

对数公式(1)的用法是:真数的指数可以移到对数前面作为对数的系数,反过来,对数的系数也可以移到真数的头上作为真数的指数,在对数运算中,这两种用法都常常会用到。对数公式(2)实际上是是由(1)得到的,它最常的用法是:真数进行n次方,同时对数乘以1/n,对数的值保持不变,这个结论很容易理解,在此不做过多讨论。

4160a1f17133d413c52d66ccd91d1166.png

第1题,等式左边可以使用公式(1)变成单个的对数,右边使用同底对数加法公式也可以变成单个的对数,之后根据同底对数相等,则真数相等,得到M和N之间的关系式,最终就可以求出M/N的值。要注意的是:不要忘了对数的真数大于0这一隐含条件。

1b109b3268823b3c18d91efc72a0677a.png

第2题,真数是两个复杂的二次根式的差,二次根式又无法开方,对于这种二次根式常常通过加平方的方法去根号,所以考虑使用上面的公式(2)进行计算,详细过程如下。

472bae76a57fbd5f3e7b7d654669bc13.png

温馨提醒:公众号菜单处可以查看分类的课程和专题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值