题目描述
给定一个包含 m x n 个元素的矩阵(m 行, n 列),请按照顺时针螺旋顺序,返回矩阵中的所有元素。
示例 1:
输入:
[
[ 1, 2, 3 ],
[ 4, 5, 6 ],
[ 7, 8, 9 ]
]
输出: [1,2,3,6,9,8,7,4,5]
示例 2:
输入:
[
[1, 2, 3, 4],
[5, 6, 7, 8],
[9,10,11,12]
]
输出: [1,2,3,4,8,12,11,10,9,5,6,7]
code
- di,dj表示坐标(i,j)的变化方向
- 初始化(di,dj)=(0,1)代表矩阵向i不变,j增1的方向移动,即向右移动一位
- 顺时针(向右->向下->向左->向上),(di,dj)的变化为:(0,1)->(1,0)->(0,-1)->(-1,0)…
找到其中的规律发现,每到转弯处(di,dj)=(dj,-di)
class Solution {
public:
vector<int> spiralOrder(vector<vector<int> >& matrix) {
if(matrix.empty())//特判
return {};
int n=matrix.size();//行
int m=matrix[0].size();//列
vector<int> ans;
//visit[i][j]表示matrix[i][j]是否访问过
vector<vector<bool> > visit(n,vector<bool>(m,false));//二维数组初始化
int i=0;
int j=0;
int di=0;
int dj=1;
for(int k=0; k<n*m; k++,i+=di,j+=dj){
ans.push_back(matrix[i][j]);
visit[i][j]=true;
if(visit[(i+di+n)%n][(j+dj+m)%m]){//判断当前方向是否访问完毕,加上m以免负数越界
int tmp=di; //转换方向:(di,dj)=(dj,-di)
di=dj;
dj=-tmp;
}
}
return ans;
}
};