利用matlab统计一张图中线段的数量_北师大七上数学4.2比较线段的长短知识点精讲...

这篇博客介绍了线段的性质、比较线段的方法以及尺规作图的技巧。通过实例展示了如何用matlab统计一张图中的线段数量,并探讨了线段中点的概念。此外,还讲解了如何利用几何原理优化实际问题,如最短线段问题,以及在设计公园桥梁时考虑线段最短原则的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4d7c23808ab28d6ff234525fd5c2e01c.gif

知识点总结

1、线段的性质:两点之间,线段最短。

2、两点之间的距离:两点之间线段的长度叫做两点之间的距离。

3、比较线段长短的方法:(1)目测法;(2)度量法;(3)叠合法

4、线段的中点:在线段上,到线段两个端点距离相等的点叫做线段的中点。

5、尺规作图:用没有刻度的直尺和圆规作图

6、用尺规作线段:

(1)作一条线段等于已知线段;

(2)作一条线段等于已知线段的二倍;

(3)作一条线段等于已知线段的和或差。其方法是相同的,都是先画一条射线,然后用圆规在射线上截取即可,注意保留作图痕迹,画完图形后写出总结“某某线段即为所求作的线段”。

尺规作图的定义:仅用圆规和没有刻度的直尺作图的方法叫做尺规作图. 

要点诠释:

(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.

(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.

(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.

2.线段的中点:如下图,若点B在线段AC上,且把线段AC分成相等的两条线段AB与BC,这时点B叫做线段AC的中点.

f675de195e1adc84c4add1391e1dde57.png

5903d8639ac43eb07ba1215cc0328f85.png

3. 用尺规作线段或比较线段

(1) 作一条线段等于已知线段:用圆规作一条线段等于已知线段.例如:下图所示,用圆规在射线AC上截取AB=a.

e49ebab488c02d8282ea102ad9dc73c0.png

要点诠释:几何中连结两点,即画出以这两点为端点的线段.

(2)线段的比较:

叠合比较法:利用直尺和圆规把线段放在同一条直线上,使其中一个端点重合,另一个端点位于重合端点同侧,根据另一端点与重合端点的远近来比较长短.如下图:

c36ba24e354bfdaecb4953cc6559d17a.png

要点诠释:线段的比较方法除了叠合比较法外,还可以用度量比较法.

 如图所示,在一条笔直公路a的两侧,分别有A、B两个村庄,现要在公路a上建一个汽车站C,使汽车站到A、B两村的距离之和最小,问汽车站C的位置应如何确定?

807b75f9a7574eb4feb9003b5ceff738.png

【答案与解析】

解:如图,连接AB与直线a交于点C,这个点C的位置就是符合条件的汽车站的位置.

2ef38940558618349267ef21c9a53799.png

【总结升华】“两点之间线段最短”在实际生活中有广泛的应用,此类问题要与线段的性质联系起来,这里线段最短是指线段的长度最短,连接两点的线段的长度叫做两点间的距离,线段是图形,线段长度是数值.

举一反三:

【变式】 (1)如图1所示,把原来弯曲的河道改直,A、B两地间的河道长度有什么变化?

(2)如图2,公园里设计了曲折迂回的桥,这样做对游人观赏湖面风光有什么影响?与修一座直的桥相比,这样做是否增加了游人在桥上行走的路程?说出上述问题中的道理.

590e4c0e6850d7d5695ecc6090985f55.png

【答案】

解:(1)河道的长度变小了.

     (2)由于“两点之间,线段最短”,这样做增加了游人在桥上行走的路程,有利于游人更好地观赏湖面风光,起到“休闲”的作用.

e905d299ce874f23bdab9120fa1231b3.png

55736fba8310995f45dba1ae6f827c2d.png

f8fb3d605e4eeec4d00ebc03d0dfb190.png

思维导图 

3d977e0dc2d0ede971604d4ec16b1b4c.png 3b8eed7ab48d6f6cdfc020008cf3e4c2.png 1d03c4f65c8a737baa8d3f1ced44268c.png ba4afe030615682574b7cc063d051e02.png f4946090290985c9d2ae107bc6615e09.png c1fa90340096eee496607ef5833feef5.png 17bb66d1dd53e78978ea38ee95efbb44.png 3c4c8a08d16250ed5744fa7adaac0f60.png

教学设计

一、教材分析:

1、教材的地位和作用

本节课是教材第五章《平面图形及其位置关系》的第二节,是平面图形的重要的基础知识。通过上一节课的学习,学生了解了线段的定义和表示方法,这一节将从学生的生活经验出发,抽象提炼线段的基本性质,线段的大小比较方法等。这对学生几何意识的起步、基本的操作方法、几何语言的培养、乃至后期几何图形的学习都具有重要的作用。

2、学情分析

鉴于学生的认知水平和几何方法才起步,教学中要始终遵守学生主动学习的原则,低起点、多铺垫,多给学生思考的时间,让学生动手操作。同时利用多媒体辅助教学拓展学生的思维,初步培养学生的几何语言的规范性。

3、教学重、难点

教学重点:了解线段性质及线段的比较方法,能用圆规作一条线段等于已知线段,掌握两点之间的距离的概念和线段中点的概念.

教学难点:

1.掌握线段比较的正确方法.

2.线段中点的表示方法及应用.

二、教学目标

(一)知识与技能:借助于具体情景中了解“两点之间线段最短”的性质;能借助于尺、规等工具比较两条线段的大小;能用圆规作一条线段等于已知线段,掌握线段的中点的表示方法及应用。

(二)过程与方法:通过思考想象、合作交流、动手操作等数学探究过程,了解线段大小比较的方法策略,学习开始使用几何工具操作方法,发展几何图形意识和探究意识。

(三)情感态度与价值观:在解决问题的过程中体验动手操作、合作交流、探究解决的学习过程,激发学生解决问题的积极性和主动性。

三、教学方法

 结合本节课内容和学生实际我采用了如下教学法:即引导发现式的教学方法并充分利用多媒体辅助教学;在教学时,调动学生动手、动脑、共同探索来寻求解决问题的方法。

四、教学资源:

   班班通多媒体课件

五、教学流程:

(一)、创设情境,引入新课  

(二)、小组合作,探索新知

(三)、小试牛刀,应用实践

(四)、知识归纳,情感升华

(五)、当堂检测,及时反馈

(六)、布置作业,课后巩固

六、教学设计思路

本课首先从学生已有的生活经验出发,设计活动,通过学生讨论,得出身高比较及模拟试验;培养学生思考问题的开放性,然后通过类比的思想得出线段比较的三种方法,并通过折纸的过程中,发现线段中点。整堂课的教学活动中,本着体现学生的主动性、参与性,在自主探索,合作交流的过程中,真正理解和掌握基本数学知识,实际几何语言的书写,培养学生的实际能力、合作能力及创新能力。

七、教学过程

教学环节

师活动

学生活动

设计意图

1、生活中的数学:

多媒体出示生活中“猫狗获取食物”的图片,让学生猜测它们的走法。

提出问题:小狗、小猫为什么都选择直的路?

2、用多媒体出示一张图片,让学生猜测“从A到C的四条道路,哪条最短?”

发现结论:两点之间的所有连线中,线段最短.

简述为:两点之间线段最短。

顺利的引出定义:两点之间线段的长度,叫做这两点之间的距离

3、能否说 “线段就是距离”?

不能说线段是距离。

线段是图形,距离是长度,它是一个数量,且有长度单位。

4、联系生活,课外拓展:

如图:这是A、B两地之间的公路,在公路工程改造计划时,为使A、B两地行程最短,应如何设计线路?在图中画出。你的理由是                      .

积极参与观察、讨论、交流、总结.

学生发言,易于得出线段AC最短

学生分小组讨论,找代表起来发表看法。

找一个同学起来回答,现学现用。

 通过学生积极参与和播放多媒体图片,创设情境,引入线段长短的比较,既激发学生学习新知识的兴趣,又让不同的学生获得不同的体验. 

通过田径赛跑中跑道的长度来说明线段不是距离更具有说服力。

从学生熟悉的生活实例导入,使学生体会到“两点之间,线段最短”的性质 。

1、在班上找两个同学比身高。怎样比较的?

  ①找两个身高差的很大的同学(观察)

②找两个身高差不多的同学(比较)

教师有意叫矮一点的同学站在讲台上,高一点的同学站在讲台下背靠背比高.

学生会反对,指出应脚根靠脚根,背靠背。

趁机提出为什么要站在一起,脚根靠脚根,背靠背?

2、给你两根筷子,你能比较出它们的长短吗?

  学生容易想到下列两种方法:

①先用尺子量出它们的长度,然后根据长度比较出它们的长短。

②把一根筷子捏在一起,使它们的一端对齐,就可比较出它们的长短。

教师强调比较时要注意:一头对齐,几根紧靠,观察另一头的位置。这就为后续两线段大小比较作铺垫。

由生活中比较长短引出两条线段如何比较长短呢?(将实际问题转化为数学问题)

3、用什么方法比较两条线段的长短?

方法一:观察法:

图中观察法不能得出:AB=CD,可见观察法不可靠。

方法二:度量法(从“数值”的角度):

用刻度尺量出两条线段的长度,再进行比较(实质上是比较数的大小。测量中不管如何的细致,总会有误差。)

方法三:叠合法(从“形”的角度):

①生活中如何比较两根绳子的长短、两个同学的身高?

提出问题:类比上面的方法怎样比较线段的长短?

②叠合法:将两条线段的各一个端点对齐,看另一个端点的位置.

结果有三种情况:大于、小于、等于.

如图(1),线段AB与线段DC相等,记作:AB=CD.

如图(2),线段AB大于线段CD,可记作:AB>CD.

如图(3),线段AB小于线段CD,可记作AB<CD.

4、动手操作,尺规画出一条线段等于已知线段吗?

针对刚才的比较筷子继续提出问题:筷子能很方便地移动,你能把任一条线段移动到你纸面上吗?如果不用刻度尺还能用什么更为简便的工具来移动它?-----圆规

用叠合法比较线段的长短,首先要学会如何用圆规作一条线段等于已知线段。

例题:已知线段a,用尺规作一条线段AC等于已知线段a

第一步:先用直尺画一条射线AB.

第二步:以A为圆心,在射线AB上截取线段AC=a.

所以,线段AC就是所求的线段.

(注意:要求学生不必写画法,但最后必须写好结论)

5、线段的中点

(1)在半透明纸上画一条线段AB,折纸使A和B重合,将纸展开后,在线段AB上折痕处描点M。

教师提出问题:线段AM和BM 的大小关系是什么?线段AM和AB的大小关系是什么?   (学生先折、师生交流)

(2)怎样将一根绳子分成相等的两段?

(3)线段的中点(从学生的回答中,归纳出线段中点的定义)

用几何语言表示:

 ∵点M是线段AB的中点

6、例题解析

在直线上顺次取A、B、C三点,使得AB=4㎝,BC=3㎝.如果O是线段AC的中点,求线段OB的长度。

解:因为线段AC=AB+BC=7 cm,O是线段AC的中点,

所以OA=AC=3.5 cm,

而线段OB=ABOA=0.5 cm.

因此,线段OB的长度是0.5 cm.

解:∵AB=4cm  BC=3cm

AC=AB+BC=7cm

O是线段AC的中点

OA=AC=3.5cm

OB=ABOA

OB =4-3.5=0.5cm

学生容易想到下列两种方法1、两人自报身高 2、把他 们拉在一起比一比。

将课前准备好的两根长短不一的筷子拿出来,请一名学生上讲台操作。

学生自由发言

学生动手操作

将学生前后位分组,进行学中做,先独立思考,有疑问的鼓励学生合作探讨,生生互动,进行“学中做”

与生活中的比较长短、身高类比,引入线段长短的比较,使学生更容易理解比较线段长短的方法。

教学中注意问题呈现的层次性,可直接观察判断到难以直接观察判断,这样不仅有利于学生体会比较线段大小的必要性,而且有利于从中归纳比较线段长短的方法,体现数学来源于生活,与服务于生活的理念,调动学生学习热情,掌握比较方法。

通过折纸、把绳子分成相等的两段等生活实例,更能加深学生对线段中点定义的理解,基础练习有助于巩固方法,阶梯训练则突出了不同学生得到不同发展这一理念,同时可以巩固对线段中点表示方法的掌握,训练学生规范的几何语言。

两种格式的书写方式以给学生参考

1、如图,从A到B有4条道路,为了节约时间,你会选择    条路。原因是                         。

2、下面的线段中,哪条线段最长?哪条线段最短?

(鼓励学生用两种方法进行比较)

答案:自左向右,第三条线段最长,第一条线段最短.

3、概念理解:

(1)判断:若AM=BM,则M为线段AB的中点。(    )

反例:等腰三角形。线段中点的条件:

①、在已知        上。 

②、把已知线段分成两条       线段的点.

(2)如图,AB=8㎝,CB=5㎝,D是AC的中点,求DC的长。

解:∵ AB=8㎝,CB=5㎝

∴ AC=______—_______ =______—_______

   =______

∵ D是AC的中点

∴ DC=_______=_______=_______

先小组讨论在到全班讨论交流,二至三人上讲台口述解题思路,供其他同学评议,开阔思路.

根据不同层次的学生设计不同层次的问题,引导学生“做中学” ,体验数学,感受数学,体现学以致用。

知识

归纳

情感

升华

1、线段的性质:两点之间的所有连线中,线段最短.

2、两点间的距离的概念

3、线段比长短的两种方法:重合法和度量法.

它们分别从“形”和“数”的角度来比较线段的长短.

4、线段的画法:用圆规和直尺画一条线段等于已知线段.

5、线段中点的定义及表示方法。.

学生先自述学会了什么,找几位学生谈收获和体会。

培养学生自我总结自我评价能力,学会把零散的知识点进行整和优化,完善自己的知识构件。

当堂

检测

及时

反馈

一、基础巩固

1.连结_______的_______叫作两点间的距离.

2.点B把线段AC分成两条相等的线段,点B就叫做线段AC的_______,这时,有AB=_______,AC=_______BCAB=BC=_______AC.

3.思考:若MA=MB,则M是线段AB的中点.(     )(填“√”“×”)

二、填空题

1.如图,点CAB为2∶3,点DAB为1∶4,若AB为5 cm,则AC=_______cm,BD=_______cm,CD=_______cm.

2.下面线段中,_______最长,_______最短.

按从长到短的顺序用“>”号排列如下:

3.若线段AB=a,C是线段AB上任一点,MN分别是ACBC的中点,则MN=_______+_______=_______AC+_______BC=_______.

三、比较下列各组线段的长短

(1)线段OAOB

(2)线段ABAD.             (3)线段ABBCAC

四、解答题

1.已知两条线段的差是10 cm,这两条线段的比是2∶3,求这两条线段的长.

2.在直线AB上,有AB=5 cm,BC=3 cm,求AC的长. 

解:(1)当C在线段AB上时,AC=_______.

(2)当C在线段AB的延长线上时,AC=_______.

根据所学内容有针对性的设计当堂检测题,给学生限时独立完成。

讲评时学生同桌之间交换批阅。

通过当堂过关训练来达到一个反馈的目的。

布置

作业

课后

巩固

1、基础作业:课本P8    习题5.2  1、2、3、4

2、拓展作业:

在直线上取A、B、C三点,使得AB=4㎝,BC=3㎝.如果O是线段AC的中点,求线段OB的长度。

学生课下完成。

作业分层布置,可以使学生根据自己的实际情况选择适合自己的作业,避免“一刀切”的局面,有助于提高学生学习数学的积极性。

八、板书设计

§5.2比较线段的长短

一、线段的性质                               

二、两点之间的距离                           

三、线段长短的比较

四、尺规作图

①:观察法

②:度量法(从“数值”的角度)

③:叠合法(从“形”的角度)

五、线段的中点

六、课堂练习

七、课时小结

八、课后作业

九、教学后记

由于学生刚接触几何知识,本节内容虽说难度不大,但知识点多,容量较大,学生学起来会觉得有些累。但本节课设置的问题情境贴近学生生活,可以很好的解决从形象到抽象的过程。在教学过程中,通过多媒体演示一些简单的动画效果,既增加趣味性,又直观,有利于提高学生的学习兴趣.同时,穿插学生猜想,动手操作,合作交流的内容,既能启发学生积极思考,又能使学生体会与他人合作的重要性。本节内容也渗透了分类的数学思想。一些拓展题能让学得更好的学生吃饱,也起到举一反三,一题多变的作用。

声明:素材来源于网络,本公众号免费为学生提供优质的学习资源,无任何商业用途,如有不妥,请与小编联系处理(微信号:chqyy58)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值