我现在做汉字的特征提取,做了粗网格和外轮廓等多个特征,关于神经网络, 这两天的看书 ,我觉得RBF比较合适,但是时间来不及了,我一直用的是BP网络做的。对RBF不是很熟悉
现在奉上BP的粗网格特征提取的一个程序,哪位大侠能帮我用RBF翻译一下, 就是同样的程序,用RBF网络训练网络, 然后再加上一行 训练时间长短的指令,这样可以和BP对比。以显示RBF训练时间好。
function Untitled_3_Callback(hObject, eventdata, handles)
global net
global netype
if isempty(net)==0
PathName1=uigetdir('D:\0MATLAB\车牌\字符样本','选择训练样本集');
if PathName1~=0
if netype==1
gs=25;
elseif netype==2
gs=9;
end
srzp=zeros(80,40,gs);
srgg=zeros(40,20,gs);
directory_name =PathName1;
dir_struct = dir([directory_name,'/*.bmp']);
[sorted_names,sorted_index] = sortrows({dir_struct.name}');
for i=1:length(sorted_names)
a=imread([directory_name,'\',sorted_names{i}]);
srzp(:,:,i)=BiaoZhun(a);
srgg(:,:,i)=imresize(srzp(:,:,i),[40,20],'bilinear');
srgg(:,:,i)=im2bw(srgg(:,:,i));
end
%------------------%以下为方格网特征
tzz=zeros(gs,32);
for k=1:gs
for i=1:8
for j=1:4
tzz(k,(i-1)*4+j)=sum(sum(srzp((i-1)*10+1:i*10,(j-1)*10+1:j*10,k)));
end
end
end
tzz=tzz';
T=eye(gs,gs);
%------------------%以上为方格网特征
[net,tr]=train(net,tzz,T);
% ceshishuzinet=net;
% save ceshishuzinet ceshishuzinet
end
else
errordlg('please input net');
end