ps:对原文有所删减
在这篇博客中,作者介绍了九个数据集,其中一些是推荐系统中常用到的标准数据集,也有一些是非传统意义上的数据集(non-traditional datasets),作者相信,这些非传统数据集更接近真实场景的数据。
首先,先说明下推荐系统数据中的几个类别:
Item: 即我们要推荐的东西,如产品、电影、网页或者一条信息片段
User:对item进行评分以及接受推荐系统推荐的项目的人
Rating:用户对item的偏好的表达。评分可以是二分类的(如喜欢和不喜欢),也可以是整数(如1到5星)或连续(某个间隔的任何值)。 另外,还有一些隐反馈,只记录一个用户是否与一个项目进行了交互。
数据集
MovieLens
MovieLens数据集由GroupLens研究组在 University of Minnesota — 明尼苏达大学(与我们使用数据集无关)中组织的。 MovieLens是电影评分的集合,有各种大小。 数据集命名为1M,10M和20M,是因为它们包含1,10和20万个评分。 最大的数据集使用约14万用户的数据,并覆盖27,000部电影。 除了评分之外,MovieLens数据还包含类似“Western”的流派信息和用户应用的标签,如“over the top”和“Arnold Schwarzenegger”。 这些流派标记和标签在构建内容向量方面是有用的。内容向量对项目的信息进行编码,例如颜色,形状,流派或真正的任何其他属性 - 可以是用于基于内容的推荐算法的任何形式。
MovieLens的数据在过去20年中已经由大学的学生以及互联网上的人们进行收集了。 MovieLens有一个网站