在一个无序的int数组上构建一个最小堆的时间复杂度_漫画:寻找无序数组的第k大元素...

本文探讨了如何在无序数组中找到第k大的元素,介绍了排序法、插入法、小顶堆法及分治法。小顶堆法通过维护一个k大小的堆,实现实时更新,时间复杂度为O(nlogk)。分治法以快速排序为基础,通过递归分解问题,潜在效率更高,达到O(n)。
摘要由CSDN通过智能技术生成

本期封面作者:泰勒太乐

6a236ba41bd2f7f4ea91e409af2699d0.png

9ecf8a0de597dc6b3d625fe1a43d2b23.png

—————  第二天  —————

3c1f0c09429669751ce6140d3a0f6841.png

780ab035b214c66e177fd5c56508f70a.png

2422fa9affe95ce2c11811d74cc543d5.png

题目是什么意思呢?比如给定的无序数组如下:

9cfef147e90aced285901363d1d88dda.png

如果 k=6,也就是要寻找第6大的元素,这个元素是哪一个呢?

显然,数组中第一大的元素是24,第二大的元素是20,第三大的元素是17 ...... 第6大的元素是9

e341d10196ac2cdb300493f8c7424181.png

e5a33a4c80da84db03d063953766a824.png

570fbc1c9ee5a5e80f96db4064933073.png

方法一:排序法

这是最容易想到的方法,先把无序数组从大到小进行排序,排序后的第k个元素,自然就是数组中的第k大元素。

8eaeecbdc35285dc444acbeb62690121.png

ccd36759259959f0351b6ba9385de85b.png

e5a33a4c80da84db03d063953766a824.png

56f5ff3c61a2f2433a8fe262b076a314.png

方法二:插入法

维护一个长度为k的数组A的有序数组,用于存储已知的k个较大的元素。

接下来遍历原数组,每遍历到一个元素,和数组A中最小的元素相比较,如果小于等于数组A的最小元素,继续遍历;如果大于数组A的最小元素,则插入到数组A中,并把曾经的最小元素“挤出去”。

比如k=3,先把最左侧的7,5,15三个数有序放入数组A当中,代表当前最大的三个数。

6399265e9f9bf0f82ea08813107d7fd9.png

这时候,遍历到3, 由于3<5,继续遍历。

ea8ffed9cccd6d949f4d95c009581a45.png

接下来遍历到17,由于17>5,插入到数组A的合适位置,类似于插入排序,并把原先最小的元素5“挤出去”。

d054ff6986a7afda5142d2b12a2b2318.png

继续遍历原数组,一直遍历到数组的最后一个元素......

最终,数组A中存储的元素是24,20,17,代表着整个数组中最大的3个元素。此时数组A中的最小的元素17就是我们要寻找的第k大元素。

c20b9d61d41bab5dc8624ee17f225280.png

29feac93a9caf5eb85b17fe94e253ff3.png

6170badc893e3561031520be9a93882c.png

0753c9d7cfa42aaf7cab93b25ff1d611.png

————————————

f385f807a791fc6e7393369471dc81cb.png

7fcc034e6fa84510447d12bcd0b23688.png

9f2f52411ece38cfc800ca909665afee.png

051121e78f7c18c1db467b50c57abdf7.png

什么是二叉堆?不太了解的小伙伴可以先看看这一篇:漫画:什么是二叉堆?(修正版)

简而言之,二叉堆是一种特殊的完全二叉树,它包含大顶堆和小顶堆两种形式。

其中小顶堆的特点,是每一个父节点都大于等于自己的子节点。要解决这个算法题,我们可以利用小顶堆的特性。

a68e7880bb40ce5b8c0d78fbbbfc94c1.png

fe62b64a3dacc5d768d39450bf209af0.png

方法三:小顶堆法

维护一个容量为k的小顶堆,堆中的k个节点代表着当前最大的k个元素,而堆顶显然是这k个元素中的最小值

遍历原数组,每遍历一个元素,就和堆顶比较,如果当前元素小于等于堆顶,则继续遍历;如果元素大于堆顶,则把当前元素放在堆顶位置,并调整二叉堆(下沉操作)。

遍历结束后,堆顶就是数组的最大k个元素中的最小值,也就是第k大元素

假设k=5,具体的执行步骤如下:

1.把数组的前k个元素构建成堆。

9f768db8ceee421c0d7351ae24f35c29.png

2.继续遍历数组,和堆顶比较,如果小于等于堆顶,则继续遍历;如果大于堆顶,则取代堆顶元素并调整堆。

遍历到元素2,由于 2<3,所以继续遍历。

e862dc4d6783823350f9c603e7dcbd7d.png

遍历到元素20,由于 20>3,20取代堆顶位置,并调整堆。

d3bd0bcc69e1b69e6baf977f7bade933.png

a31cf5bfb9b0b99569a0685378bf87a1.png

遍历到元素24,由于 24>5,24取代堆顶位置,并调整堆。

e6fc6564a092518000b3f1590d1e654b.png

6e7120b73c1eb16b4f32dd8b816dc3d6.png

以此类推,我们一个一个遍历元素,当遍历到最后一个元素8的时候,小顶堆的情况如下:

b6c0855a2e4e62265a2ff46c813d2fbe.png

3.此时的堆顶,就是堆中的最小值,也就是数组中的第k大元素。

d0d937abafce6fbb5b91ecaf9a38098d.png

这个方法的时间复杂度是多少呢?

1.构建堆的时间复杂度是 O(k)

2.遍历剩余数组的时间复杂度是O(n-k)

3.每次调整堆的时间复杂度是 O(logk)

其中2和3是嵌套关系,1和2,3是并列关系,所以总的最坏时间复杂度是O((n-k)logk + k)。当k远小于n的情况下,也可以近似地认为是O(nlogk)

这个方法的空间复杂度是多少呢?

刚才我们在详细步骤中把二叉堆单独拿出来演示,是为了便于理解。但如果允许改变原数组的话,我们可以把数组的前k个元素“原地交换”来构建成二叉堆,这样就免去了开辟额外的存储空间。

因此,方法的空间复杂度是O(1)

cf0764c17ded83e347804dba6ec2de2c.png

d86b5babc911e6cff00ecec9d6245471.png

/**

* 寻找第k大的元素

* @param array  待调整的堆

* @param k  第几大

*/

public static int findNumberK(int[] array, int k){

   //1.用前k个元素构建小顶堆

   buildHeap(array, k);

   //2.继续遍历数组,和堆顶比较

   for(int i=k; i<array.length;i++){

       if(array[i] > array[0]){

           array[0] = array[i];

           downAdjust(array, 0, k);

       }

   }

   //3.返回堆顶元素

   return array[0];

}

/**

* 构建堆

* @param array  待调整的堆

* @param length  堆的有效大小

*/

private static void buildHeap(int[] array, int length) {

   // 从最后一个非叶子节点开始,依次下沉调整

   for (int i = (length-2)/2; i >= 0; i--) {

       downAdjust(array, i, length);

   }

}

/**

* 下沉调整

* @param array     待调整的堆

* @param index    要下沉的节点

* @param length    堆的有效大小

*/

private static void downAdjust(int[] array, int index, int length) {

   // temp保存父节点值,用于最后的赋值

   int temp = array[index];

   int childIndex = 2 * index + 1;

   while (childIndex < length) {

       // 如果有右孩子,且右孩子小于左孩子的值,则定位到右孩子

       if (childIndex + 1 < length && array[childIndex + 1] < array[childIndex]) {

           childIndex++;

       }

       // 如果父节点小于任何一个孩子的值,直接跳出

       if (temp <= array[childIndex])

           break;

       //无需真正交换,单向赋值即可

       array[index] = array[childIndex];

       index = childIndex;

       childIndex = 2 * childIndex + 1;

   }

   array[index] = temp;

}

public static void main(String[] args) {

   int[] array = new int[] {7,5,15,3,17,2,20,24,1,9,12,8};

   System.out.println(findNumberK(array, 5));

}

e1c09500dd0be689d7b2775c6cf2b225.png

方法四:分治法

大家都了解快速排序,快速排序利用分治法,每一次把数组分成较大和较小的两部分。

我们在寻找第k大元素的时候,也可以利用这个思路,以某个元素A为基准,把大于于A的元素都交换到数组左边,小于A的元素都交换到数组右边。

比如我们选择以元素7作为基准,把数组分成了左侧较大,右侧较小的两个区域,交换结果如下:

875f2a6f40e8a03985162869922f9154.png

包括元素7在内的较大元素有8个,但我们的k=5,显然较大元素的数目过多了。于是我们在较大元素的区域继续分治,这次以元素12位基准:

09c510558eab6ea0d5382edd98b7038e.png

这样一来,包括元素12在内的较大元素有5个,正好和k相等。所以,基准元素12就是我们所求的。

这就是分治法的大体思想,这种方法的时间复杂度甚至优于小顶堆法,可以达到O(n)。有兴趣的小伙伴可以尝试用代码实现一下。

fd05a9fc05f61bfc6018dd4280d9f9df.png

觉得本文有用,请给个好看,觉得特别有用,请转发给你的朋友们。

喜欢本文的朋友们,欢迎长按下图关注订阅号程序员小灰,收看更多精彩内容

8635bf5c2237adf7bc8cfe2727f9892f.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值