信息量,惊奇度,熵、KL散度(相对熵),交叉熵、最大似然估计MLE与最小化交叉熵的等价证明、

一: 一些基本概念

1.1 信息量:特定事件所携带的信息多少

信息量衡量的是特定事件所携带的信息多少,其数学定义为:其中p(x)是事件x发生的概率。
在这里插入图片描述

核心思想:越罕见的事件,其携带的信息量越大;越常见的事件,其携带的信息量越小。

例如:

  • 如果某事件必然发生(p(x)=1),信息量为0,意味着观察到它不会带来任何新信息
    -如果某事件极其罕见(p(x)很小),信息量很大,观察到它提供了大量信息

1.2 惊奇度:观察到某事件时的"意外程度"

惊奇度表示观察到某事件时的"意外程度",其数学定义为:
₂

核心思想:越意外的事件惊奇度越高,越预期的事件惊奇度越低。

实际上,惊奇度和信息量是完全等价的数学表达式:

信息量强调的是事件所携带的信息内容
惊奇度强调的是事件发生的意外程度

1.3 熵 Entropy:度量随机变量的不确定性

信息论中的基本概念,用于度量随机变量(一个概率分布)的不确定性。

熵的概念可以从信息论角度推导:

  • 定义信息量: 对于概率为 p 的事件,其信息量为 I( p )=-log2 ( p)
  • 低概率事件携带更多信息(更"意外")
  • 高概率事件携带更少信息(更"预期")

1.3.1 定义:熵是平均信息量

熵是平均信息量:

对于离散随机变量X,其熵定义为:
在这里插入图片描述

对于一个特例,p(X=x₀)=1,即随机变量 X 确定性地取值为 x₀,我们可以如下推导:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值