c++ 3d求点到直线的距离_每日一题 | 距离2020年高考还有20天!

本文通过多个例题详细解析了在C++中如何利用解析几何的方法求解3D空间中点到直线的距离,包括紧扣定义解题、引入参数、数形结合、应用平面几何、平面向量和曲线系等解题策略,旨在帮助备考高考的学生提升解题效率。
摘要由CSDN通过智能技术生成

328237d7e32c0f8dde3ffff9f9b69fae.png

a799f68b057d9f0d5d1309fbdd6dc390.png

圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧。

一. 紧扣定义,灵活解题

灵活运用定义,方法往往直接又明了。

例1. 已知点A(3,2),F(2,0),双曲线7183f37bf2fae06b25d819fda1bc2b29.png,P为双曲线上一点。

b821f8d40afb62b958da4aa0c9eee5e7.png的最小值。

b7ae0a0e23d52def9939108085ad3985.png答案解析 7ea9c2ffdd5850e1a5e5bee65d88ea9f.png

解析:如图所示,

014a1e43f39e0983dff795ea46696433.png

e6bf64c32d29a31842ebd8464aca5fc8.png双曲线离心率为2,F为右焦点,由第二定律知5b60809572f8297351193acdf505cc10.png即点P到准线距离。

d4e74377577912e30e6f44cdcaba1b22.png

二. 引入参数,简捷明快

参数的引入,尤如化学中的催化剂,能简化和加快问题的解决。

例2. 求共焦点F、共准线7511b5ace4e4e7d0171b38c7eb858065.png的椭圆短轴端点的轨迹方程。

b7ae0a0e23d52def9939108085ad3985.png答案解析 7ea9c2ffdd5850e1a5e5bee65d88ea9f.png

解:取如图所示的坐标系,设点F到准线7511b5ace4e4e7d0171b38c7eb858065.png的距离为p(定值),椭圆中心坐标为M(t,0)(t为参数)

3f333e1823991767dc6990d02124dc35.png

5668d31a79c0452b9ffbb893fe2398b2.png,而26deb6377b366ea9eca06f31b4cc1b36.png

b24d38d63a0a4150025358f5d8b740cc.png

再设椭圆短轴端点坐标为P(x,y),则

f70387137ad44b3c5c71c125e4bca6b6.png

消去t,得轨迹方程856c099ef3998d5a9a181b04bbe19be4.png

三. 数形结合,直观显示

将“数”与“形”两者结合起来,充分发挥“数”的严密性和“形”的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化。熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题。

例3. 已知390806b3cf10284bcdebb1371cc1de2f.png,且满足方程35f617445d06824a365007ee51fb0996.png,又59ff714f3d8b90b1bcbfc3dac2b8c00a.png,求m范围。

b7ae0a0e23d52def9939108085ad3985.png答案解析 7ea9c2ffdd5850e1a5e5bee65d88ea9f.png

解析:34df40f12573a9bd55c78ec9a94dab6d.png的几何意义为,曲线35f617445d06824a365007ee51fb0996.png上的点与点(-3,-3)连线的斜率,如图所示

a1d3622b2d946f96fd2a9855e1c61e40.png

57b3e4d12ed311cf7bdeeef7835b8ae5.png

ee57df49f666f974f238d47637a0c768.png

四. 应用平几,一目了然

用代数研究几何问题是解析几何的本质特征,因此,很多“解几”题中的一些图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解。

例4. 已知圆659e9bb569be4b4f689eb122672e482a.png和直线52e37cc21ba06a07cc394d25218185e2.png的交点为P、Q,则d76c1aad5a1b294f8f55c9d90c2844c5.png的值为________。

b7ae0a0e23d52def9939108085ad3985.png答案解析 7ea9c2ffdd5850e1a5e5bee65d88ea9f.png

解:2c99ea3fcaaf5b1d7687bea153f1717f.png

dd95e1a687a93edef5b158038bf888a1.png

五. 应用平面向量,简化解题

向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具。

例5. 已知椭圆:bcd8a8029d25c481ed2292c5229916b4.png,直线7511b5ace4e4e7d0171b38c7eb858065.png7f361536bdf788865d4ecd54c4e7be3c.png,P是7511b5ace4e4e7d0171b38c7eb858065.png上一点,射线OP交椭圆于一点R,点Q在OP上且满足b6f8282d1b07e8f8521fffb3ec753bb2.png,当点P在7511b5ace4e4e7d0171b38c7eb858065.png上移动时,求点Q的轨迹方程。

f236354209363ed4282dd1edd6adb28e.png

分析:考生见到此题基本上用的都是解析几何法,给解题带来了很大的难度,而如果用向量共线的条件便可简便地解出。

b7ae0a0e23d52def9939108085ad3985.png答案解析 7ea9c2ffdd5850e1a5e5bee65d88ea9f.png

解:如图,9015129088a14cc0c3f3eaba258302d5.png共线,设bbe4c9363de898e99396ee704424f272.png4d87642c154ed7ba6c64dbb1340c7717.png8bd5e8c36edb82978e21a0f719a9c9f2.png,则71f7182219af363225d4e77ae8fc4e3c.png3761ca39a6f8132b02a0d87ab6883fa7.png

4a1db31a5bdcec0fd9b7fa2a7f1ba767.png

1448b296f3feb3b97182396f37be4fed.png

f6ec5be53e3ace5c6c5f50081eb68024.png

45135dc70ebe738a4d32f2b99e68a663.png

e6bf64c32d29a31842ebd8464aca5fc8.png点R在椭圆上,P点在直线7511b5ace4e4e7d0171b38c7eb858065.png

b65d637548abf22a9bd2d2f048d10f59.png700e8b320f393a49c53aa58947351322.png

2529145ca85d5f9cab71b8f50a6d11e7.png

化简整理得点Q的轨迹方程为:

d914490405289588f3aed65eb5086315.png(直线c93fb05153d745d11884d8cdc0b40ab5.png上方部分)

六. 应用曲线系,事半功倍

利用曲线系解题,往往简捷明快,收到事半功倍之效。所以灵活运用曲线系是解析几何中重要的解题方法和技巧之一。

例6. 求经过两圆8ed638becad177c49222452a2eabbb0d.pngd0ccdc44c12ad08de00bc0df4595e8e1.png的交点,且圆心在直线615a155a10ceeb36c9a2db208bfb96bd.png上的圆的方程。

b7ae0a0e23d52def9939108085ad3985.png答案解析 7ea9c2ffdd5850e1a5e5bee65d88ea9f.png

解:设所求圆的方程为:

cae3bc4cedcfbffa1016d396afbe2a7e.png

6345bc99d57314e4cdeefc8e126896c9.png

则圆心为718cc318213f2979cd09defe9418be7b.png,在直线615a155a10ceeb36c9a2db208bfb96bd.png

de9d30d469d6020f057505bd857cb84c.png解得37b6eca3a47c83fd25c412e6840d769f.png

故所求的方程为e73bd78dd3d3ec08a83782782d939ec4.png

七. 巧用点差,简捷易行

在圆锥曲线中求线段中点轨迹方程,往往采用点差法,此法比其它方法更简捷一些。

例7. 过点A(2,1)的直线与双曲线3d5ba7ed4d16087e0f719ac1227ef290.png相交于两点P1、P2,求线段P1P2中点的轨迹方程。

b7ae0a0e23d52def9939108085ad3985.png答案解析 7ea9c2ffdd5850e1a5e5bee65d88ea9f.png

解:设420433ccc4bf2a62a999d99dae43af14.pnga3c83e98c36c8e9314bed312080e71a0.png,则

aeee1ff93d339bd12472adf28eb34297.png

<2>-<1>得

95ce62b2b18ef3caa2997d5756e9d57c.png

18e52285c1cb714c392e435d96a23f1b.png

设P1P2的中点为931699479f0ba7485ed4c320d0c5f9e8.png,则

19758850ff6cf5a7143273e6cca7f173.png

5848651d888c4e1ed4dbfab5ebaa2b9f.png,而P1、A、M、P2共线

8ede999c7d58e1938867bdc25e91000a.png,即7f950477bf1aa28d7f833c989e79f87b.png

8f6d14feea3fb583b04f3d1d37190da0.png中点M的轨迹方程是913322bf13420ced14f8cb32b3a8ffc8.png

b148f52b4b9b9c609c90e8fb90634dfe.gif 每日一题 | 距离2020年高考还有26天! 2020-06-10 每日一题 | 距离2020年高考还有27天! 2020-06-09 每日一题 | 距离2020年高考还有28天! 2020-06-08

▐ 标签:高考数学  每日一题

▐ 更多内容请关注微信公众号平台:高考数学 ID:gksx100

a11dd77d845f0f5874c2fbba8edc3c83.png

点亮“在看”

让更多人看见

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值