圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧。
一. 紧扣定义,灵活解题
灵活运用定义,方法往往直接又明了。
例1. 已知点A(3,2),F(2,0),双曲线,P为双曲线上一点。
求的最小值。
答案解析解析:如图所示,
双曲线离心率为2,F为右焦点,由第二定律知即点P到准线距离。
二. 引入参数,简捷明快
参数的引入,尤如化学中的催化剂,能简化和加快问题的解决。
例2. 求共焦点F、共准线的椭圆短轴端点的轨迹方程。
答案解析解:取如图所示的坐标系,设点F到准线的距离为p(定值),椭圆中心坐标为M(t,0)(t为参数)
,而
再设椭圆短轴端点坐标为P(x,y),则
消去t,得轨迹方程
三. 数形结合,直观显示
将“数”与“形”两者结合起来,充分发挥“数”的严密性和“形”的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化。熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题。
例3. 已知,且满足方程,又,求m范围。
答案解析解析:的几何意义为,曲线上的点与点(-3,-3)连线的斜率,如图所示
四. 应用平几,一目了然
用代数研究几何问题是解析几何的本质特征,因此,很多“解几”题中的一些图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解。
例4. 已知圆和直线的交点为P、Q,则的值为________。
答案解析解:
五. 应用平面向量,简化解题
向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具。
例5. 已知椭圆:,直线:,P是上一点,射线OP交椭圆于一点R,点Q在OP上且满足,当点P在上移动时,求点Q的轨迹方程。
分析:考生见到此题基本上用的都是解析几何法,给解题带来了很大的难度,而如果用向量共线的条件便可简便地解出。
答案解析解:如图,共线,设,,,则,
点R在椭圆上,P点在直线上
,
即
化简整理得点Q的轨迹方程为:
(直线上方部分)
六. 应用曲线系,事半功倍
利用曲线系解题,往往简捷明快,收到事半功倍之效。所以灵活运用曲线系是解析几何中重要的解题方法和技巧之一。
例6. 求经过两圆和的交点,且圆心在直线上的圆的方程。
答案解析解:设所求圆的方程为:
则圆心为,在直线上
解得
故所求的方程为
七. 巧用点差,简捷易行
在圆锥曲线中求线段中点轨迹方程,往往采用点差法,此法比其它方法更简捷一些。
例7. 过点A(2,1)的直线与双曲线相交于两点P1、P2,求线段P1P2中点的轨迹方程。
答案解析解:设,,则
<2>-<1>得
即
设P1P2的中点为,则
又,而P1、A、M、P2共线
,即
中点M的轨迹方程是
每日一题 | 距离2020年高考还有26天! 2020-06-10 每日一题 | 距离2020年高考还有27天! 2020-06-09 每日一题 | 距离2020年高考还有28天! 2020-06-08▐ 标签:高考数学 每日一题
▐ 更多内容请关注微信公众号平台:高考数学 ID:gksx100
点亮“在看”
让更多人看见