使用 newton迭代方法计算方程某一区间的值代码_方程近似解法之牛顿法

对于方程求解,在实际工程中,往往不需要精确解,而是只需精准到工程所需要的程度即可。

本文介绍用牛顿法求解方程近似解,并通过C语言程序来实现。

牛顿法求解方程的近似解

041d41cb6c40cfba787d0876bdf0eaff.png

求解方程

4c668d69f1c72d3825568fac71a8381b.png
8683d6f471bb46eca2f996f0f578a3db.png

则有

5f8a78e4834416cbead41c94d0dd5d63.png

可知,开区间(1,2)内,f'(x) > 0 且 f''(x) > 0。于是,y = f(x)的图形在区间[1,2]内单调递增且下凸。

在这里,以点(2, 6)为切点作曲线f(x)的切线,切线交x轴为x1。x1为解的第一近似值。然后,再作过点(x1, f(x1))的切线,切线交x轴为x2。接着,再作过点(x2, f(x2))的切线,切线交x轴为x3。

973bf5fc7817b9eb65e9d5489b738418.png

第一近似值x1的取得

ae33096ca5d2c18a04ea3acb827124ac.png

x2的取得

73195a96b84c7f68979a75d33e9c7227.png

x3的取得

同样的操作一直进行下去,可得如下数列

cc17f7fac81001f0218e3eded822a574.png

曲线切线与x轴交点的数列

该数列收敛于f(x) = 0在开区间(1, 2)内的唯一解。

通常,过曲线y=f(x)上点(a, f(a))的切线方程为

fa0b76bd112d9556b6ff6a22152c9ed8.png

切线方程

该切线与x轴的交点为

b0b4351c8c0315ce9311ccb52427df7a.png

切线与x轴的交点

于是,若设最初切点的x轴坐标值为x0的话,则有如下的递推关系式

ab03e5f60a755bb80c43139c519571c6.png

牛顿迭代公式

该式也称为牛顿迭代公式

C语言程序实现牛顿法求解

  • 代码
//newton.c#include #include //函数定义#define F(x)  ((x)*(x)*(x)-3*(x)*(x)+9*(x)-8)#define G(x)  (3*(x)*(x)-6*(x)+9)int main(void){ double x=2; //出发点 double xn=0; //第n回的近视值 double e=0.000001; //解的精度 int n = 0; //回数 while( 1 ) { n++; /*计算牛顿迭代式*/ xn = x - F(x) / G(x); printf("%d:x%d=[%.7lf],x%d=[%.7lf]", n, n, xn, n-1, x);  if(fabs(xn -x) < e) break; x = xn; } printf("在第 %d 回取到满足精度(%lf)的解: x = %.6lf", n, e, xn); return 0;}
  • 编译・执行
$ gcc -o newton newton.c$ ./newton1:x1=[1.3333333],x0=[2.0000000]2:x2=[1.1695906],x1=[1.3333333]3:x3=[1.1659067],x2=[1.1695906]4:x4=[1.1659056],x3=[1.1659067]5:x5=[1.1659056],x4=[1.1659056]在第 5 回取到满足精度(0.000001)的解: x = 1.165906
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值