mysql数据库切分_【干货】MySQL数据库切分架构实践 - 用户中心

在实际的互联网项目中,往往数据量到了一定的量级,就必须进行分库分表。那么究竟如何分库分表才是合理的。本文将结合实际的应用场景进行分析。

应用场景:用户中心数据库切分架构实践

用户中心是作为一个常见的业务系统,包含注册、登录、用户信息查询基础服务。

用户的核心元数据为:

User(uid,mobile,nickname,password)

在业务初期,往往单库就能满足需求:

023282b6ebc002836de56004650f61ec.png

当数据量越来越大时,需要对数据库进行水平切分。

切分的方式通常有两种:range和hash。

我们通常采取哈希取模的方式进行切分,以用户中心的业务uid为划分依据,将数据水平切分到n个数据库实例上去:

5dd61fbb6bbc78bc833ff9a2337943e5.png

哈希取模的优点:

1.切分方式简单,能够快速定位到数据存放在拿个数据库中;

2.数据量均衡:数据在各个库上的均衡分布,能极大提升整体查询效率

哈希取模的不足:

扩容时需要进行部分数据迁移,所以最好一开始就预估好数据量。

问题一:如何hash能最大程度减少扩容时需要迁移的数据库数量?

这个问题比较简单,留给读者思考。

问题二:假如要根据nickname进行查询数据,这个时候应该怎么办?

针对这个问题,较为常见的有两种解决方案。

方案一:建立nickname至uid反向索引表

不足之处:增加存储空间,同时需要多出一次查询。

方案二:将nickname作为因子融入uid中。

9150b539a2c0fa483b4ed59abae34779.png

具体做法:

1.在用户注册时,设计函数gene=f(nickname)

2.生成60位的全局唯一id,作为用户的标识

3.把4位的gene也作为uid的一部分

4.生成64位的uid,由id和gene拼装而成,利用gene分库插入数据

5. 用nickname来访问时,先通过f(nickname)再次复原gene

问题三:运营侧复杂的数据查询怎么解决?

通常我们的做法是写入数据时同步一份数据供运营后台单独使用,独立部署MySQL实例,尽量不进行分库分表,以满足复杂的数据查询需求。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值