点击右上角关注“陈老师初中数理化”分享学习经验,一起畅游快乐的学习生活。
在二次函数中求解满足相切条件的圆心坐标是数学中考的常考题型,本文就例题详细解析这类题型的解题思路,希望能给初三学生的数学学习带来帮助。
例题
如图,抛物线y=-1/4x^2+mx+n的图像经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图像经过点A,交x轴于点P,交抛物线于另一点B,点A,B位于点P的同侧。
(1)求抛物线的解析式;
(2)若PA:PB=3:1,求一次函数的解析式;
(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C同时与x轴和直线AP相切,如果存在,请求出点C的坐标,如果不存在,请说明理由。

1、求抛物线的解析式
根据题目中的条件:抛物线y=-1/4x^2+mx+n的图像对称轴为直线x=1,则m/(1/2)=1,可求得m=1/2;
根据题目中的条件和结论:抛物线y=-1/4x^2+mx+n的图像经过点A(2,3),m=1/2,则-1/4×4+1/2×2+n=3,可求得n=3;
所以,抛物线的解析式为:y=-1/4x^2+1/2x+3。
2、求一次函数的解析式
过点A作AM⊥x轴于点M,BN⊥x轴于点N

根据题目中的条件:点A(2,3),则AM=3,OM=2;
根据题目中的条件:AM⊥x轴,BN⊥x轴,则BN∥AM;
根据平行线成比例性质和结论:BN∥AM,则BN/AM=PB/PA;
根据题目中的条件和结论:PA:PB=3:1,BN/AM=PB/PA,AM=3,则BN=1,即点B的纵坐标为1;
根据结论:抛物线的解析式为:y=-1/4x^2+1/2x+3,点B在抛物线上,点B的纵坐标为1,则点B的横坐标=4或-2;
(1)点B的横坐标=4
根据题目中的条件和结论:一次函数y=kx+b的图像与抛物线交于点A、B,B(4,1),A(2,3),则k=-1,b=5;
(2)点B的横坐标=-2
根据题目中的条件和结论:一次函数y=kx+b的图像与抛物线交于点A、B,B(-2,1),A(2,3),则k=1/2,b=2;
所以,一次函数的解析式为:y=-x+5或y=1/2x+2。
3、求点C的坐标
根据题目中的条件:k>0,则一次函数的解析式为:y=1/2x+2;
设抛物线的对称轴与x轴交于点D,设⊙C与直线AP的切点为E,连接CE,设抛物线的对称轴与直线AP交于点F,设⊙C的半径为r

根据结论:一次函数的解析式为:y=1/2x+2,当x=1时,可求得y=5/2,当y=0时,可求得x=-4,则点F的坐标为(1,5/2),点P的坐标为(-4,0);
根据结论:点F的坐标为(1,5/2),点P的坐标为(-4,0),则DF=5/2,OP=4;
根据结论:DF=5/2,CD=r,OP=4,OM=2,则CF=DF-CD=5/2-r,PM=OM+OP=6;
根据切线的性质和结论:点C为圆心,点E为切点,则CE⊥AP;
根据切线的性质和结论:点C为圆心,点D为切点,则CD⊥x轴;
根据结论:CE⊥AP,AM⊥x轴,CD⊥x轴,则∠PDF=∠PMA=∠AEC=90°;
根据勾股定理和结论:∠PMA=90°,AM=3,PM=6,AP^2=AM^2+PM^2,则AP=3√5;
根据结论:∠PDF=∠AEC=90°,则∠APM+∠PFD=∠ECF+∠PFD=90°,即∠APM=∠ECF;
根据相似三角形的判定和结论:∠APM=∠ECF,∠PMA=∠AEC=90°,则△APM∽△FCE;
根据相似三角形的性质和结论:△APM∽△FCE,则AP/CF=PM/CE;
根据结论:AP/CF=PM/CE,AP=3√5,CF=5/2-r,PM=6,CE=r,则(5/2-r)/3√5=r/6,可求得r=5√5-10,即CD=r=5√5-10;
根据题目中的条件和结论:点C在直线x=1上,CD=5√5-10,则点C的坐标为(1,5√5-10)。
结语
解决本题的关键是合理添加辅助线,构造出相似三角形,利用圆的切线性质和相似三角形性质,可以列方程求得与直线相切的圆的半径,根据半径与圆心坐标的关系,就可以轻松求得题目需要的值。