取绝对值函数图像怎么画_一道取绝对值后的函数的不可导点问题

博客围绕取绝对值函数图像绘制展开,先考虑去掉绝对值的函数情况,对函数进行分析,还提及考察相关函数时的发现,以及类比情况,最后指出剩下的零点位置,还提到可导函数加绝对值后的不可导点问题参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

函数

的不可导点是

分析:先考虑去掉绝对值的函数 :

所以

是多项式函数,从而处处连续而且可导。显然,在
仍然是可导的,不可导点只能在
的零点(同时也是
的零点)处,也就是

接下来我们考察

在这些零点处的导数,
的导数是:

我们发现

.

类比

在它的零点
处的导数等于1,也就不等于0,加绝对值后
处不可导,因为在
上这一点的左导数等于-1,右导数等于1,左右导数不相等。

对于这道题那么

应当是
的不可导点。事实上,
的零点
的导数不等于0
左右侧
函数值异号,也就是一定有一侧在一个范围内是负数,加绝对值后这个范围内的函数图像一定会翻折。

剩下的零点处在

上的导数为0,加绝对值后在
处的导数仍然是0。可以类比
以及
,代表了导数为0的零点附近加绝对值后函数图像变化的几种不同情况:左右不变或者同时翻折,或者只翻折一侧。

注:关于可导函数加绝对值后的不可导点问题参考下面回答:

刘最白:有哪些连续函数但某点不可求导的例子?​www.zhihu.com
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值