为什么我喜欢Python?对于初学者来说,这是一种简单易学的编程语言,另一个原因:大量开箱即用的三方库。下面给大家分享6个实用Python库,喜欢的话就点赞或收藏吧!
1. Typer
在FastAPI取得巨大成功之后,tiangolo使用同样的原理开发了typo,这是一个新的库,它允许你利用Python 3.6+的类型提示特性来编写命令行接口。它是FastAPI的升级版,不仅能够准确地记录代码,还能够轻松地进行CLI验证。这样的设计可以确保你的代码得到适当的文档化,通过使用类型提示,你可以在编辑器(如VSCode)代码自动补全,大大提高了你的工作效率。它还能配合命令行神器Click使用,这样就可以利用Click的优点和插件完成更复杂的操作。
2. Dear PyGui
虽然Rich可以让你的终端应用程序变得很漂亮,可是这并不够,你一定需要一个真正的GUI,Dear PyGui是一个便于使用、功能强大的Python GUI框架。它使用了在电子游戏中很流行的即时模式范式。这基本上意味着动态GUI是逐帧独立绘制的,不需要持久化任何数据。这也是Dear PyGui与其他Python GUI框架不同的地方,Dear PyGui的高性能,是你在工程、模拟、游戏或数据科学应用程序中经常需要用到的。
3. PyTorch Lightning
每一个能够提高数据科学团队生产力的工具都是非常宝贵的。PyTorch Lightning用科学与工程分离的方式来提高效率,它有点像TensorFlow的Keras,可以使你的代码更加简洁,不过它依然还是PyTorch,可以访问所有常用的api。这个库可以让DL / ML研究的40多个部分实现自动化,比如GPU训练、分布式GPU(集群)训练、TPU训练等
4. Scalene
Scalene是一个高性能的CPU内存分析器,它可以正确处理多线程代码,并区分运行Python和本机代码所花费的时间。不必修改代码,只需要使用scalene从命令行运行脚本,它就可以为你生成一个文本或HTML报告,显示代码每行的CPU和内存使用情况。
5.Matplotlib
这是另一个用于数据可视化的有用Python库。描述性分析和可视化数据对任何组织都是非常重要的。Matplotlib提供了各种方法来有效地可视化数据。它让你可以快速制作线形图、饼状图、直方图和其他专业级图形。使用Matplotlib,可以定制图形的每个方面,具有缩放、规划和以图形格式保存图形等交互式功能。
6.Pygal
Pygal 的名气就不那么大了,和其它常用的绘图包一样,它也是用图形框架语法来构建图像的。由于绘图目标比较简单,因此这是一个相对简单的绘图包。Pygal设计用于创建矢量图形,主要是在网站上。它允许用户以相当简单的方式制作有吸引力的交互式图表。它专门用于创建可缩放矢量图形(SVG),该图形与flask或Django等Python框架很好地集成在一起。