11年亚锦赛球员数据_【2011年篮球亚锦赛资讯】2011年篮球亚锦赛足球知识与常识 - 足球百科 - 599比分...

中国男篮在亚锦赛中共获得了16次冠军,包括两次五连冠和一次四连冠。本文回顾了中国男篮在亚锦赛上的经典战役,如1977年第九届亚锦赛小组赛净胜239分、1989年王非决赛独得31分助队大胜韩国以及2009年中国男篮以72分优势击败印度并创下三分球纪录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

亚锦赛共举办了28届,以下是28届冠军名单

1届-14届冠军名单:

15届-28届冠军名单:

扩料:

中国男篮二十八届亚锦赛冠军获得次数最多的队伍。

中国男篮自1975年参加第八届亚锦赛以来,在所参加的21届亚锦赛中16次夺冠,其中包括两次五连冠和一次四连冠。

中国男篮在亚锦赛中一共拿到了138场胜利,以下是部分经典战役:

1、第九届亚锦赛小组赛净胜239分

1977年第九届亚锦赛有14支球队参赛,中国男篮被分在A组,同组对手有伊拉克、泰国、新加坡和巴林,中国男篮小组赛4战4胜,四场比赛净胜总分达到了239分,场均59.75分。239分也是中国男篮在历届亚锦赛小组赛中的最大净胜分。

2、1989年王非大放异彩决赛大胜韩国30分

1989年的第15届亚锦赛上,王非一人大放异彩,中国队也一路连胜进入了决赛。在决赛中,中国与韩国队争夺最后的冠军,当时中国男篮正处在新老交替之中,韩国队的整体实力要高于我们。

但是王非全场内突外投得到31分,帮助中国队以102-72大胜韩国队,夺得冠军,30分当时也是中韩大战中的最大分差,此外他还防住了李忠熙,让其只得到9分。

此后,韩国队每遇中国队都仿佛心理上有了阴影,可以说,王非一战让韩国队患上了“恐中症”。赛后,韩国队的亚洲第一后卫许载也公开称,“王非的31分让比赛失去了悬念,与其说中国队打败了我们,不如说是王非一人打败了我们,整场比赛我们对他实行了重点盯防,但收获甚微。

在韩国人眼里,王非就是中国队中的乔丹,离最终封神也仅有一步之遥。

3、中国男篮72分大胜印度18记三分创纪录

2009年第25届亚锦赛小组赛,坐镇主场的中国男篮第一场面对弱旅印度以121-49获胜,取得开门红。在亚锦赛历史上,中国男篮与印度队共交手6次,全部以大胜收场,此前的最大分差为55分,本场的72分创造两队历次比赛的最大分差纪录,单场18个三分也创造了中国队在国际大赛的三分球纪录。

参考资料来源:

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
粒子群优化(PSO)是一种基于群体智能的优化算法,由James Kennedy和Russell Eberhart于1995提出,灵感来源于鸟群或鱼群的群体行为 。它通过模拟群体间的协作竞争,利用个体和群体的经验来迭代求解问题 。PSO常用于优化支持向量机(SVM)的参数,以提升模型性能 。SVM是一种强大的监督学习模型,通过寻找最优超平面实现分类或回归 ,其性能依赖于参数C(惩罚因子)和γ(核函数参数) 。 PSO优化SVM参数的过程如下:首先随机生成一组粒子,每个粒子代表一组SVM参数(C和γ) 。接着,使用这些参数训练SVM模型,并通过测试集评估性能(如准确率或F1分数),作为粒子的适应度值 。然后,根据个体和全局最优解的位置更新粒子的速度和位置 ,速度决定移动方向和速度,位置表示参数组合 。粒子群共享全局最优解信息,推动所有粒子向最优解移动 。重复上述步骤,直至达到预设迭代次数或满足停止条件 。 在实际应用中,PSO-SVM的实现通常包括以下部分:数据预处理(导入、清洗、标准化等) ;PSO算法实现(定义粒子结构、初始化种群、设定优化目标和边界条件) ;SVM模型训练(使用不同参数组合) ;适应度计算(评估模型性能) ;更新规则(根据PSO算法更新速度和位置) ;主循环(多轮迭代,记录全局最优解) ;结果分析(展示最佳参数组合,进行最终预测) 。 PSO优化SVM参数的过程自动高效,可提高模型泛化能力和预测准确性 。对于初学者,这是一个很好的实践案例,有助于理解优化算法在机器学习中的应用 ;对于有经验的开发者,可作为进一步研究和改进的基础,例如探索PSO变体或结合其他优化方法 。
在移动开发领域,Android Studio 是谷歌推出的官方集成开发环境(IDE),专门用于开发 Android 应用。本项目旨在通过 Android Studio 创建一个模仿流行生活分享平台小红书的简单应用。小红书以其强大的社交功能和丰富的用户生成内容而闻名,融合了购物、博客和社交媒体的特点。通过复刻小红书,开发者可以学习构建类似的混合型应用。 1. Android Studio 核心知识点 界面设计:利用 Android Studio 的布局编辑器(可通过 XML 编码或拖放操作)来构建用户界面,涵盖 TextView、ImageView、RecyclerView 等多种组件。 主题样式:掌握 Material Design 的应用,自定义主题和样式,以实现类似小红书的视觉效果。 Activity Fragment:理解 Activity 和 Fragment 的生命周期,以及它们在多屏幕适配中的作用。 Intent:通过 Intent 实现页面跳转和数据传递。 2. 小红书 App 特性实现 登录注册:实现用户登录和注册功能,可能涉及 OAuth 或自定义认证机制。 数据获取展示:使用网络请求库(如 Retrofit 或 OkHttp)从服务器获取数据,并通过 RecyclerView 展示,可能采用瀑布流布局。 图片加载:借助图片加载库(如 Glide 或 Picasso)优化图片加载速度和性能。 社交功能:实现评论、点赞、分享等社交功能,涉及数据库操作和网络通信。 动态通知:集成 Firebase Cloud Messaging(FCM)实现即时消息推送。 3. Android SDK 相关库 Android SDK:熟悉不同版本的 Android API,确保应用的兼容性。 Room Persistence Library:用于本地数据库存储,缓存
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值