找出两个矩阵不同的元素_线性代数 | 矩阵的应用(上)

我们看过很多矩阵,这些矩阵看上去都非常地漂亮,表现了各种各样的特性。但令人遗憾的是,这些矩阵是人为制造出来的,并非来自于实际应用。周一IBPE例会结束后,我和同一小组的两个队友一起走回宿舍,在路上我们讨论矩阵。同学W说:“我现在学习这些东西并不知道它们有什么用,这样让我很难学下去。”同学K_____他说:“矩阵在很多方面被使用,比如图论和拓扑。”(还有相当多的应用,比如在化学中,初等行变换也可使复杂化学反应变得更直观)我对图论和拓扑的初步了解是在高二暑假参加的厦门大学物理与科学技术学院的科普营上,钱建国教授的讲座“从四色猜想到四色定理”讲座中在介绍五色定理的证明时简单介绍了图论,并在最后介绍了拓扑学。当然当时只是很粗浅地了解(现在对拓扑的直观认识还仅仅停留在几个洞和亏格上)

4b3e7f0d299a50f6b2f8c0ca6f5053c1.png

图1 2017年8月5日 厦门大学钱建国教授讲座:从四色猜想到“四色定理”


小世界理论

你听说过小世界理论吗?
小世界理论指出:你和任何一个陌生人之间所间隔的人不会超过六个。可以随意地画一下(灵魂画手再次出道),小人之间的连线代表他们之间相互认识。

312ebe87c720c9737416b9f54015b1f0.png

图2 灵魂画手半分钟画出来的图

这是数学上最重要的一个模型之一,离散数学称之为“图”(Graph )


Graph: Nodes and Edges

一个图(graph)包含点(nodes)和边(edges),将每一条边标示方向(我们可以将这个数学模型想象成电路网络),边的方向代表电流的方向,接下来可能会利用电势、电势差、电流等词。接下来通过构造一个矩阵来解析这个图的含义,这个矩阵叫关联矩阵(incidence matrix)。矩阵的一行表示一条边,矩阵的一列表示一个点。矩阵元素1代表电流流入,-1代表电流流出,0则代表无电流通过。

7908b23b57d90d9c689e7bbccc647356.png

图3 一个“图”的例子

9fe977ad1a28498d78cd90d1ee81c3c0.png

图4 图的关联矩阵

观察图3,边1、2、 3构成一个回路;观察图4,矩阵A的前三行排列很有意思——第一行加第三行等于第二行,所以这说明了,图的边1、2、3构成回路,矩阵的前三行线性相关——与回路对应的行是线性相关的。


矩阵A的零空间(Nullspace of A)

       存在一个线性组合使得Ax=0吗?事实上要知道这个答案我们需要消元,但是在这里我们马上就能发现,矩阵A的所有列相加为零列(zero column)。因此当Ax=0时,矩阵A的零空间包含了向量 x=(1,1,1,1)。而方程组 Ax=b却没有唯一的解,任意一个“常向量” x=(c,c,c,c)都可能成为Ax=b的一个特解。(像是我们算不定积分时的+C)
       我们假设x1, x2, x3, x4是点上的电势,那么Ax的五个组成部分给出了五条边上的电势差。比如第一条边两端的电势差是x2-x1。
       方程组 Ax=b同时抛出这么一个问题:给定不同的b1,…,b5,找出其对应的电势x1,…,x4。但这几乎不可能做得到!我们同时升高或降低所有电势c倍,电势差仍然不会改变——如此再次证明x = (c, c, c, c)是矩阵A的零空间。且它同时是零空间中唯一的向量,因为Ax=0意味着每条边两端的电势差都相等。故该关联矩阵的零空间是一维的,关联矩阵的秩rank(A)=4-1=3


列空间(Column Space)

当b1, . . . , b5满足什么关系时我们能解出Ax=b呢?为了方便直接验证,我们回到矩阵A——第一行和第三行相加等于第二行,因此在右边,我们需要 b1 + b3 = b2 ,否则方程组无解。同理 b3 + b5 = b4

继续观察矩阵A,我们又发现,第一行加第四行等于第二行加第五行,但这并没有什么用(可以从上面两个直接推出)。列空间的维数是 5 - 2 = 3。这些结果我们都可以通过消元得出,但在“图”中,它还有另外一种含义。基尔霍夫电压定律指出:在任何一个闭合回路中,各元件上的电压降的代数和等于电动势的代数和,即从一点出发绕回路一周回到该点时,各段电压的代数和恒等于零。在图上部分的环路中,不同的电势满足(x2 − x1) + (x3 − x2) = (x3 − x1),因此 b1 + b3 = b2;同理在下部分环路中,b3 + b5 = b4。矩阵与物理定律的联系多紧密呀!b在列空间中满足基尔霍夫电压定律(Kirchhoff’s Voltage Law: The sum of potential differences around a loop must be zero.)


左零空间(Left Nullspace)

为了求解方程组77bb039d724519e3c3a91b4b5f171bea.png,我们继续在“图”上寻找它的意义。向量y有5个分量,每个分量对应一条边。这些数字代表流经五条边的电流,77afd4262a7b8ff51b91e5953d3dd043.png是一个4×5的矩阵,方程组77bb039d724519e3c3a91b4b5f171bea.png提供了五条边上电流的四个条件,且在每个点上流出和流入的电流大小相等:

7401b822b96db7d2143baf67e0077c7c.png

找到77bb039d724519e3c3a91b4b5f171bea.png的一组解意味着找到一组电流,使得电荷不会在任意一个点上堆积。电流在不断循环,而最简单的解决方法就是找到电流的环路。我们的图拥有两个环路,我们在每个环路上输入1安培的电流,则:

ea5816515b67552bd8575068e78aa13c.png

每个环路产生了左零矩阵的一个向量y。元素±1表明了电流是沿箭头方向还是逆这箭头方向。y1和y2的线性组合组成了整个左零空间——因此y1和y2是左零空间的一组基(basis),事实上y1 - y2 = (1,-1, 0, 1,-1) 是这个图中最大的环路。

      左零空间和列空间联系紧密——左零空间包含了向量y1= (1, 1, 1, 0, 0 ),而列空间中的向量满足 b1 - b2 + b3 = 0。我们发现——6d65d3c952e11fe89c4858a3d24225e3.png——列空间和左零空间中的向量是垂直的! 这成了线性代数基本定理的第二部分。


行空间(Row Space)

矩阵A的行空间是实数域上的四维向量空间,它的维度等于它的秩rank(A)=3。通过消元我们找到线性无关行向量,我们再看回图。前三行是线性相关的(row 1 + row 3 = row 2,并且这三条边组成一个环路),第1、2、4行是线性无关的(因为这三条边并没有构成回路)。

7908b23b57d90d9c689e7bbccc647356.png

图5 还是原来的图,再发一遍方便看

第1、2、4行成为行空间的一组基。每一行的数相加结果为0。在行空间中的任意一个线性组合8b7a5188dada4ac4a94464502d544fd2.png都有相同的性质:

459a4a077665b472c0f9aab3a20c8c08.png

再一次印证了线性代数的基本定理:矩阵的行空间和零空间垂直。如果f在行空间中,x在零空间中,那么4c7684f0cfc60be7934ac6d88d19fdef.png

对于44056b354e8a11871ad57346803881c0.png,它在基本电路理论中对应了基尔霍夫电流定律。流经每个点的电流代数和为0,f1、f2、f3、f4表示条边对每个点的电流贡献,即每个点的电流来源。例如f1必须等价于 -y1-y2。这是方程组98e97811142308112f11135bc99f2418.png中的第一个方程。同样地,在另外三个点上,必须满足进入的电荷量和出来的电荷量相等。最激动人心的是,矩阵44056b354e8a11871ad57346803881c0.png是基尔霍夫电流定律的完美表达。(Kirchhoff's Current Law: The net current into every node is zero. Flow in = Flow out. )、

当 f = 0 时,1174071a24fd96c544bad212e2ec1e29.png表示电流构成回路。


文章大段翻译自Gilbert Strang(这真是一本不可多得的好书,配上Prof.Strang的公开课视频简直美滋滋),同时还加入大量自己的理解:D 阅读此文需要有关于线性空间的一定知识储备。另外由于篇幅过长,文章分两部分发出,矩阵的应用(下)主要介绍Spanning Trees and Independent Rows,The Ranking of Football Teams以及Networks and Discrete Applied Mathematics 。

感谢阅读 欢迎指正

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值