如何将一个向量投影到一个平面上_线性代数19——投影矩阵和最小二乘

本文探讨了线性代数中的向量投影,从一维空间的投影矩阵开始,逐步推广到多维空间,并阐述了投影在解决无解方程组时的重要性。通过最小二乘法,展示了如何找到最佳拟合解,同时讨论了数据拟合中的离群量问题及其影响。文章通过实例详细解释了投影矩阵和最小二乘法的应用。
摘要由CSDN通过智能技术生成

一维空间的投影矩阵

  先来看一维空间内向量的投影:

ae4e9780bec9e30ba8a7face21ef3524.png

  向量p是b在a上的投影,也称为b在a上的分量,可以用b乘以a方向的单位向量来计算,现在,我们打算尝试用更“贴近”线性代数的方式表达。

  因为p趴在a上,所以p实际上是a的一个子空间,可以将它看作a放缩x倍,因此向量p可以用p = xa来表示,只要找出x就可以了。因为a⊥e,所以二者的点积为0:

bcb659f2ea22ab790a1ebaaccff25dba.png

  我们希望化简这个式子从而得出x:

9a509d038af1439715455621520b8c26.png

  x是一个实数,进一步得到x:

850d7cc98c501d34438fe6902c0e6e5f.png

都是点积运算,最后将得到一个标量数字。这里需要抑制住消去
的冲动,向量是不能简单消去的,a和b都是2×1矩阵,矩阵的运算不满足
乘法交换律
无法先和
计算。

  现在可以写出向量p的表达式,这里的x是个标量:

75824f744c58321f0808525e22219e2a.png


  这就是b在a上的投影了,它表明,当b放缩时,p也放缩相同的倍数;a放缩时,p保持不变。
  由于向量点积

是一个数字,p可以进一步写成:

010578bccf8878b6236c7c28c79d42b7.png

  在一维空间中,分子是一个2×2矩阵,这说明向量b的在a上的投影p是一个矩阵作用在b上得到的,这个矩阵就叫做投影矩阵(Projection Matrix),用大写的P表达:

dfd4a34224bf43feeb91d61485b2a417.png

  推广到n维空间,a是n维向量,投影矩阵就是n×n的方阵。观察投影矩阵会法发现,它是由一个列向量乘以一个行向量得到的:

<
  • 4
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值