numpy矩阵最大元素_无冕之王Numpy基础1

近日,GitHub 发布了 2018 年度机器学习和数据科学具体报告。报告显示,Python 是机器学习 repo 中最常用的语言,Numpy是最流行的机器学习&数据科学包

98b8d7dd4b5f060c63ab7c357a13e84c.png

github

Numpy安装:因为Numpy是第三方库,我们想使用必须先安装nump库,windows环境下只要cmd打开命令行窗口,输入pip install numpy,稍等片刻既可(我因为已经安装过所以界提示我numpy安装的位置。)

c430f3043f693993bf5cd9b5ededa06f.png

安装

创建组数:首先我们使用import numpy as np导入numpy模块,(as np的意思是用np这样的简写代替numpy,这样我们后面机不需要写numpy,写np即可,简单暴力方便)

  • array():创建数组
  • arange():创建指定步长的连续数组
  • reshape():改变数组的形状
5244cf3c1a3f5e65495ca34bb0022de3.png

数值的创建

numpy基础运算:numpy也是有着加减乘除的基本算法,与普通的算法一样,就是每个元素的加减乘除。

a4cf81ca06a6aefd92f712dfad838e1f.png

基础运算1

对多行多维度的矩阵进行操作,Numpy中的矩阵乘法分为两种, 其一是前文中的对应元素相乘,其二是标准的矩阵乘法运算,即对应行乘对应列得到相应元素:格式是np.dot(a,b)或者a.dot(b)

84bfc4b7b18be3003e585ec96ceafd25.png

基础运算2

极值:numpy可以求出一组数组中的最大值,最小值,和全部元素的和。

随机矩阵:random可以产生0到1之间的随机矩阵,我们可以定义它的形状,格式a=np.random.rand((2,4)),其中2表示2行,4表示4列

80c4b41c704686c72f119c4bb31490aa.png

极值

感谢阅读。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值