修复计算机命令行,如何用命令提示符修复系统还原_用cmd命令提示符恢复系统的方法...

本文介绍通过命令提示符修复Windows系统的方法,包括使用sfc和DISM工具检查及修复系统文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们在使用windows操作系统的时候,可能因为操作不当造成系统出故障,这时候很多朋友不知道该怎么办,于是直接重装系统,其实不用这么麻烦也可以解决问题,就是使用cmd命令来修复系统。那么如何用命令提示符修复系统还原呢?别着急,今天小编就为大家带来用cmd命令提示符恢复系统的方法。

用cmd命令提示符恢复系统的方法:

1、右键单击Win10开始按钮(或按Win + X快捷键),在弹出的系统快捷菜单中点击(Windows PowerShell(管理员))或者( 命令提示符(管理员));

803c14394496e5c9d5a3f6cae2f6fc72.png

2、输入“sfc verifyonly”命令,然后按Enter键。这用于查看checker命令的所有参数。例如,sfc / SCANNOW扫描所有受保护系统文件的完整性,并尽可能地修复有问题的文件。在SFC之后替换各种命令;

a480eee6f760cc9e7b288edec7fb1c0c.png

3、检查图像是否可修复,在联网模式下,扫描图像以检查是否损坏。此操作将需要几分钟。例如,在命令提示符处键入以下内容:Dism /Online /Cleanup-Image /ScanHealth;

c59e6fde6bbac47049b62bd428b1a133.png

4、检查图像以查看是否检测到任何损坏。例如,在命令提示符处键入:Dism /Online /Cleanup-Image /CheckHealth;

be7b48a850a093989e20405553fc8daf.png

5、使用/ CheckHealth参数时,DISM工具将报告图像是否处于良好状态,可修复或无法修复。如果图像无法修复,则必须丢弃图像并重新开始。如果可以修复图像,则可以使用/ RestoreHealth参数来修复图像。DISM.exe /Online /Cleanup-image /Restorehealth。

0d205912c678784a6843bd607da700e3.png

好了,以上就是关于如何用命令提示符修复系统还原的全部内容了,希望本篇用cmd命令提示符恢复系统的方法对你有所帮助。

### minimind LLMs 源码解读分析 #### full_sft.py 文件解析 `full_sft.py` 是一个用于实现基于 PyTorch 的分布式混合精度语言模型全参数训练框架的脚本[^1]。该文件主要关注于如何高效地利用硬件资源,在大规模数据集上进行高效的训练。 为了支持分布式训练,此模块引入了 `torch.distributed.launch` 工具来启动多进程环境,并通过配置 GPU 设备来进行并行计算。对于优化器的选择,默认采用 AdamW 来更新权重参数;同时为了加速收敛过程以及提高数值稳定性,还应用了梯度裁剪技术防止梯度过大造成不稳定现象发生。 此外,考虑到现代深度学习任务中常见的内存瓶颈问题,这里实现了自动混合精度机制 (Automatic Mixed Precision, AMP),它允许网络中的某些部分以较低位宽的数据类型运行从而节省显存空间而不影响最终性能表现。 ```python from torch.cuda.amp import GradScaler, autocast scaler = GradScaler() with autocast(): outputs = model(inputs) loss.backward() scaler.step(optimizer) scaler.update() ``` #### eval.py 文件解析 另一方面,《eval.py》则专注于构建一个可以与用户实时互动交流的人工智能系统[^2]。具体来说就是创建了一个命令行界面(Command Line Interface, CLI), 让使用者能够输入自然语言查询语句得到相应的回复结果。 在这个过程中涉及到的关键组件包括但不限于: - **Tokenizer**: 负责将原始文本转换成 token 序列以便送入 Transformer 编解码架构处理; - **Model Inference Pipeline**: 定义好推理流程之后就可以调用预训练好的 checkpoint 进行预测操作了; - **Response Generation Logic**: 根据上下文信息动态调整生成策略确保对话连贯性逻辑一致性. ```python tokenizer = AutoTokenizer.from_pretrained('pretrained_model_path') model = AutoModelForCausalLM.from_pretrained('pretrained_model_path') input_text = "你好" inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=50) response = tokenizer.decode(outputs[0], skip_special_tokens=True) print(response) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值