import os
import sys
from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cluster import KMeans
labels=["玉米深厚层施肥精量播种机械化技术集成与示范","冀北丘陵山地葡萄优质高效水肥调控技术","机械化土壤保墒技术的研究与应用","有机物料快速高效腐熟及其应用技术","类四","类Ⅴ","华北油田持续稳产关键开发技术研究与应用"]
if __name__ == '__main__':
corpus=["玉米 播种机 农业 三农 农机 农资",
"葡萄 水肥一体化 调控",
"蔬菜 生物有机肥 有机物",
"蔬菜 农业 三农 时政",
"数据传输方式 通信",
"乌洛托品",
"华北油田 有效市场 经济建设 经济利润 国内经济 关键 时政 原油 地质"]
vectorizer=CountVectorizer()#该类会将文本中的词语转换为词频矩阵,矩阵元素a[i][j] 表示j词在i类文本下的词频
transformer=TfidfTransformer()#该类会统计每个词语的tf-idf权值
tfidf=transformer.fit_transform(vectorizer.fit_transform(corpus))#第一个fit_transform是计算tf-idf,第二个fit_transform是将文本转为词频矩阵
word=vectorizer.get_feature_names()#获取词袋模型中的所有词语
weight=tfidf.toarray()#将tf-idf矩阵抽取出来,元素a[i][j]表示j词在i类文本中的tf-idf权重
print(word)
print(weight)
for i in range(len(weight)): # 打印每类文本的tf-idf词语权重,第一个for遍历所有文本,第二个for便利某一类文本下的词语权重
print(u"-------这里输出第", i, u"类文本的词语tf-idf权重------")
for j in range(len(word)):
print(word[j], weight[i][j])
mykms=KMeans(n_clusters=5)
y=mykms.fit_predict(weight)
for i in range(0,10):
label_i=[]
for j in range(0,len(y)):
if y[j]==i:
label_i.append(labels[j])
print('label_'+str(i)+':'+str(label_i))
根据corpus进行分类,将lable打入lable_i标签中
结果截图