对应生成树的基本回路_离散课后习题答案5

本文探讨了无向图的相关理论,包括握手定理在确定最少顶点数量中的应用,以及如何根据度数列出有向图的入度列。通过具体例题解析,阐述了如何计算图的顶点数、边数以及验证图的可图化条件。同时,讨论了4阶4条边的无向简单图的同构性质。
摘要由CSDN通过智能技术生成

G +

第十四章部分课后习题参考答案

5、设无向图 G 有 10 条边,3 度与 4 度顶点各 2 个,其余顶点的度数均小于 3,问 G 至

少有多少个顶点?在最少顶点的情况下,写出度数列、 解:由握手定理图 G 的度数之和为: 2 ?10 = 20

( ) ? (G ) 。

3 度与

4 度顶点各 2 个,这 4 个顶点的度数之和为 14 度。 其余顶点的度数共有 6 度。

其余顶点的度数均小于 3,欲使 G 的顶点最少,其余顶点的度数应都取 2,

所以,G 至少有 7 个顶点, 出度数列为 3,3,4,4,2,2,2, ( ) = 4 , ( ) = 2 . G ? G

7、设有向图 D 的度数列为 2,3,2,3,出度列为 1,2,1,1,求 D 的入度列,并求

(D ),? (D ) ,

(D ),? + ( ) , D

( D ),? (D ) .

解:D 的度数列为 2,3,2,3,出度列为 1,2,1,1,D 的入度列为 1,1,1,2.

( ) = 3, ( ) = 2 , + D ? D (D ) = 2, ? +

( ) = 1, D

( D ) = 2,? ( D ) = 1

8、设无向图中有 6 条边,3 度与 5 度顶点各 1 个,其余顶点都是 2 度点,问该图有多少 个顶点?

解:由握手定理图 G 的度数之和为: 2 ? 6 = 12

设 2 度点 x 个,则 3 ?1 + 5 ?1 + 2x = 12 , x = 2 ,该图有 4 个顶点.

14、下面给出的两个正整数数列中哪个是可图化的?对可图化的数列,试给出 3 种非同 构的无向图,其中至少有两个时简单图。

(1) 2,2,3,3,4,4,5

(2) 2,2,2,2,3,3,4,4

解:(1) 2+2+3+3+4+4+5=23 是奇数,不可图化; (2) 2+2+2+2+3+3+4+4=16, 是偶数,可图化;

18、设有 3 个 4 阶 4 条边的无向简单图 G 1、G 2、G 3,证明它们至少有两个是同构的。

证明:4 阶 4 条边的无向简单图的顶点的最大度数为 3,度数之和为 8,因而度数列

1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值