图 无向图 有向图

若无向图G =(V,E)中含7个顶点,要保证图G在任何情况下都是连通的,则需要的边数最少是:
A.6
B.15
C.16
D.21

(n-1)*(n-2)/2+1

6 * 5/2+1=16

设无向图的顶点个数为N,则该图最多有多少条边?
A.N−1
B.N(N−1)/2
C.N(N+1)/2
D.N​2

用邻接表法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。(F) (1分)

解析:使用邻接表占用空间与这个图是有向图还是无向图有关。

如果是无向图,那么空间就是n+2e;如果是有向图就是n+e。(n为节点数,e为边数)。

用邻接矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关==(T)==。 (1分)

解析:邻接矩阵G[x][y]表示x->y这条边的权重,因此n各节点需要两两组合,空间大小为n^2。

如果无向图G必须进行两次广度优先搜索才能访问其所有顶点,则G中一定有回路。==(F) ==(2分)

解析:因为不论是bfs还是dfs我们在遍历的时候都进行了标记也就是当一个节点被标记了的时候这个节点就不会重复访问。

因此两次bfs才访问完所有的节点不是因为有回路而是因为这个图有两个连通分量。

如果无向图G必须进行两次广度优先搜索才能访问其所有顶点,则G一定有2个连通分量。(T)

设N个顶点E条边的图用邻接表存储,则求每个顶点入度的时间复杂度为: (2分)
O(N)
O(N​2​​)
O(N+E)
O(N×E)

解析:邻接表求入度需要遍历整个邻接表也就是n+e,而求出度是n。

在N个顶点的无向图中,所有顶点的度之和不会超过顶点数的多少倍? (2分)
1
2
(N−1)/2
N−1

解析:形成一棵树。

对于一个具有N个顶点的无向图,要连通所有顶点至少需要多少条边? (2分)
N−1
N
N+1
N/2

具有N(N>0)个顶点的无向图至多有多少个连通分量? (2分)
0
1
N−1
N

解析:无边

一个有N个顶点的强连通图至少有多少条边? (2分)
N−1
N
N+1
N(N−1)

解析:无向图有n-1个即可,有向图需要加一个形成环。

对于有向图,其邻接矩阵表示比邻接表表示更易于: (2分)
求一个顶点的入度
求一个顶点的出边邻接点
进行图的深度优先遍历
进行图的广度优先遍历

https://blog.csdn.net/qq_43446165/article/details/102841019

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值