用scala写一个入门的单机版wordcount

本文详细介绍了如何使用Spark处理字符串列表,通过切分、映射、分组等步骤实现WordCount,最终得到每个单词出现的频率,并按频率降序排序。

1、这里准备一个字符串List作为输入数据源
val lines = List("hello tom hello jerry", "hello jerry", "hello kitty")

2、WordCount
2.1、将每一个字符串按照空格切分

lines.map(_.split(" "))
2.2、将切分后的数组取掉,直接将每一个单词放在外层的List中

lines.map(_.split(" ")).flatten

2.3、前面两个步骤可以合成一个步骤完成(2.1+2.2)

lines.flatMap(_.split(" "))

结果: List[String] = List(hello, tom, hello, jerry, hello, jerry, hello, kitty)

2.4、将每一个单词和“1”组成元组

.map((_, 1))

结果: List[(String, Int)] = List((hello,1), (tom,1), (hello,1), (jerry,1), (hello,1), (jerry,1), (hello,1), (kitty,1))

2.5、分组

.groupBy(_._1)

结果:scala.collection.immutable.Map[String,List[(String, Int)]] = Map(tom -> List((tom,1)), kitty -> List((kitty,1)), jerry -> List((jerry,1), (jerry,1)), hello -> List((hello,1), (hello,1), (hello,1), (hello,1)))

2.6、将Map中的value中的元组的size

方法一:.map(t => (t._1, t._2.size))

方法二:.mapValues(_.foldLeft(0)(_+_._2))

2.7、排序

.toList.sortBy(_._2).reverse

可以用一步完成:

方法一:lines.flatMap(_.split(" ")).map((_, 1)).groupBy(_._1).map(t => (t._1, t._2.size)).toList.sortBy(_._2).reverse

方法二:lines.flatMap(_.split(" ")).map((_, 1)).groupBy(_._1).mapValues(_.foldLeft(0)(_+_._2))

 

<think>好的,用户想了解大数据离线数据处理的基础知识和入门方法,特别是Hadoop和Spark的相关内容。首先,我需要明确离线数据处理的基本概念,以及Hadoop和Spark在其中的角色。根据引用[2],大数据处理框架包括数据采集、存储、清洗、查询分析和可视化。离线处理属于批处理,通常处理历史数据,如日志分析、ETL作业,引用[4]提到Spark适用于大数据批处理,如日志处理和ETL。 接下来,基础概念部分需要解释离线数据处理的定义、特点,以及Hadoop和Spark的组件。Hadoop的HDFS和MapReduce是核心,而Spark的RDD和内存计算更适合迭代任务。引用[3]和[5]强调了Java基础的重要性,特别是对于Hadoop开发,而Spark可以使用Scala或Python。 在入门方法中,学习路径可能需要先掌握Java和Linux,然后学习Hadoop和Spark的架构。引用[3]提到Linux基本操作是必要的基础。实践部分应包括环境搭建,比如安装Hadoop和Spark,编MapReduce作业,以及使用Spark进行数据处理。引用[4]中的Spark应用场景可以作为例子,比如使用Spark SQL进行查询。 工具和框架方面,需要列出Hadoop生态系统组件如Hive、HBase,以及Spark的模块如Spark SQL和MLlib。引用[2]中的数据预处理和存储技术也需涵盖。 最后,生成相关问题时要考虑用户可能的后续疑问,比如性能优化、与其他框架对比,以及实际应用案例。确保引用正确,例如引用[4]关于Spark的应用场景,引用[2]关于处理框架的结构。需要注意使用正确的LaTeX格式,如数学公式用$...$,独立公式用$$...$$,并检查中文表达的流畅性。</think>### 大数据离线数据处理入门指南 #### 一、基础概念 1. **离线数据处理** 指对非实时、大规模历史数据进行的批量处理,典型应用包括日志分析、数据仓库构建、ETL(提取、转换、加载)等。其核心特点是高吞吐量、高延迟(小时/天级)[^2]。 2. **Hadoop与Spark的定位** - **Hadoop**: 基于分布式文件系统(HDFS)和MapReduce计算模型,适合低成本、高可靠性的海量数据存储与批处理。 - **Spark**: 基于内存计算的分布式框架,支持批处理、流处理、机器学习等,性能优于MapReduce,适合迭代计算和交互式查询[^4]。 3. **核心组件** - **Hadoop生态**: - HDFS: 分布式文件存储系统 - MapReduce: 分布式计算框架 - Hive: 数据仓库工具(SQL接口) - HBase: 分布式NoSQL数据库 - **Spark生态**: - Spark Core: 基础计算引擎 - Spark SQL: 结构化数据处理 - Spark MLlib: 机器学习库 #### 二、入门方法 1. **学习路径** - **编程基础**: Java(Hadoop开发核心语言)或Python/Scala(Spark推荐语言)[^3][^5] - **Linux操作**: 掌握基本命令和Shell脚本(Hadoop/Spark部署依赖Linux环境) - **Hadoop入门**: - 理解HDFS架构(NameNode/DataNode) - 编MapReduce程序(WordCount示例) - 使用Hive进行SQL化查询 - **Spark入门**: - 学习RDD(弹性分布式数据集)概念 - 掌握DataFrame API和Spark SQL - 实践批处理任务(如日志清洗) 2. **实践步骤** ```bash # Hadoop单机环境搭建示例 $ wget https://archive.apache.org/dist/hadoop/common/hadoop-3.3.6/hadoop-3.3.6.tar.gz $ tar -xzvf hadoop-3.3.6.tar.gz $ cd hadoop-3.3.6 $ ./bin/hadoop version ``` ```python # Spark批处理示例(Python版) from pyspark.sql import SparkSession spark = SparkSession.builder.appName("BatchDemo").getOrCreate() df = spark.read.csv("hdfs://path/to/input.csv") result = df.groupBy("category").count() result.write.parquet("hdfs://path/to/output") ``` #### 三、工具与框架对比 | 特性 | Hadoop MapReduce | Spark | |-------------------|---------------------------|--------------------------| | 计算模型 | 磁盘迭代 | 内存迭代 | | 延迟 | 高(分钟级) | 低(秒级) | | 适用场景 | 简单ETL、海量数据持久化 | 复杂ETL、机器学习、交互查询 | | 编程复杂度 | 高(需手动实现逻辑) | 低(高阶API支持) | #### 四、性能优化基础 1. **Hadoop调优**: - 调整HDFS块大小(默认128MB) - 优化MapReduce的Combiner和Partitioner - 使用压缩算法(Snappy/LZO)减少I/O开销 2. **Spark调优**: - 合理设置`spark.executor.memory`和并行度 - 利用缓存机制(`persist()`)减少重复计算 - 避免Shuffle操作(如用`reduceByKey`替代`groupByKey`) $$ \text{执行时间} \propto \frac{\text{数据量}}{\text{并行度} \times \text{单任务效率}} $$ #### 五、扩展学习资源 1. **官方文档**: - [Hadoop官方指南](https://hadoop.apache.org/docs/stable/) - [Spark编程指南](https://spark.apache.org/docs/latest/rdd-programming-guide.html) 2. **书籍推荐**: - 《Hadoop权威指南》 - 《Spark快速大数据分析》
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值