知识增强( knowledge enhancement)是一种通过从外部知识源获取和整合知识,来扩展模型理解能力的技术方法。不论模型参数量的大小,模型的知识存储能力都有局限性,知识永远不够,知识增强成为弥补知识不足的关键途径。它包括结构化、非结构化和异构知识增强等多种类型,可以在预训练、微调和推理阶段进行。通过注入事实、概念、程序和元认知等不同类型的知识,知识增强帮助模型更全面、更深入地理解和处理信息。无论是将知识深入模型参数,还是在推理过程中辅助生成,知识增强都为模型提供了更丰富、更灵活的知识获取和应用方式。
检索知识增强(Retrieval knowledge enhancement)利用从各种知识库中检索到的相关信息来增强语言模型,已被证明能有效提高模型在各种任务上的性能。检索增强按增强参与阶段可分为三种类型:预训练增强、微调增强、推理增强。
预训练增强是指在语言模型的预训练阶段,通过从外部知识源(如数据库、文章、知识图谱等)中检索并注入相关知识,以显著提升模型的知识表征和理解能力。这一方法的核心在于通过在模型的早期训练阶段引入丰富、准确的知识,使得模型能够更深层次地学习和内化这些知识,从而提高其在实际应用中的表现。与单纯的知识检索和匹配不同,预训练增强能够让模型更自然、更全面地理解和应用知识。
微调增强是指在特定学习目标的驱动下,通过轻量级的知识检索与注入方法,将外部知识整合到已预训练的语言模型中,以提升模型在特定任务上的性能和知识表达能力。与预训练增强不同,微调增强更加灵活、计算成本更低,且能够根据具体任务快速注入相关知识。微调增强为语言模型提供了一种高效、灵活的知识扩展途径,但在知识的深度、泛化性等方面仍面临挑战。
推理增强是指在语言模型的推理阶段,通过动态检索、过滤和注入外部知识,在不改变模型参数的情况下辅助生成更准确、更可靠的回答。这种方