在现代工业与制造领域,设备运行的稳定性和可靠性对生产效率和安全至关重要。然而,随着设备的复杂性日益提升,传统的故障诊断方法面临以下挑战:
1. 复杂的故障模式:设备的多部件、多工况、多故障模式使传统方法难以全面覆盖。
2. 数据爆炸与不均:海量的传感器数据与日志记录需要高效处理,而部分设备数据采集不完整,增加了解析难度。
3. 人工依赖高:诊断结果往往依赖于专家经验,存在主观性且难以快速推广。
基于这些痛点,极昆仑智能故障诊断平台引入知识图谱、深度学习和大模型等技术,帮助企业在故障发生后快速定位问题根源、提供修复建议,减少停机时间和人工投入。
1.关键技术
故障诊断包括知识图谱、深度学习及大模型等核心技术。
知识图谱:构建设备的全局关联图,利用因果推理挖掘故障根因。
深度学习:对多源数据(如振动信号、日志记录等)进行模式分析,快速检测异常并分类故障类型。
大语言模型(LLM):结合行业语料和用户交互语义,提供自然语言故障问答与分析能力。
2.产品应用
以下某IT运维交换机故障诊断数据为例,介绍故障知识图谱构建、智能故障应用两个功能。
1. 构建故障知识图谱
<