http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1057
输入N求N的阶乘的准确值。
Input
输入N(1 <= N <= 10000)
Output
输出N的阶乘
Input示例
5
Output示例
120
题意:求出N!
题解:一直没接触过这种类型的,以为需要大数的模板。结果看了别人的代码,用的巧妙的压位。其实也是大数的思路,大数加减乘除模板,是将一个长度为n的数划分成n位。我们这里也需要划分,如果是划分成一位。那么时间复杂度是不变的,只是解决了int的溢出问题。所以划分的大一点,即可以减少数组的开销,又可以降低时间复杂度。我还专门试了一下,这题最多可以划分的是14位。因为14+4就是18个0了,在不超过long long的基础上(最少可以通过的需要压4位,相当于10000进制)。然后这题压14位跑了140ms,4位的跑了468ms。
总结:压位多的可以减少运算次数,但是要避免溢出的前提下追求效率。
代码:
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<string>
#include<bitset>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<iomanip>
#include<iostream>
#define debug cout<<"aaa"<<endl
#define d(a) cout<<a<<endl
#define mem(a,b) memset(a,b,sizeof(a))
#define LL long long
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define MIN_INT (-2147483647-1)
#define MAX_INT 2147483647
#define MAX_LL 9223372036854775807i64
#define MIN_LL (-9223372036854775807i64-1)
using namespace std;
const int N = 1000000 + 5;
const int mod = 1000000000 + 7;
const double eps = 1e-8;
LL ans[N];
int main(){
int n,cnt=0;
int temp;
mem(ans,0),ans[0]=1;
scanf("%d",&n);
for(int i=2;i<=n;i++){
temp=0;//保存进位
for(int j=0;j<=cnt;j++){
ans[j]=ans[j]*i+temp;
temp=ans[j]/10000;//压4位
ans[j]%=10000;
}
if(temp){
ans[++cnt]=temp;
}
}
printf("%lld",ans[cnt]);//最高位
for(int i=cnt-1;i>=0;i--){
printf("%04lld",ans[i]);
}
puts("");
return 0;
}