http://acm.split.hdu.edu.cn/showproblem.php?pid=2121
题意:一个有n个节点的有向图,以其中一点vi为根建树要求花费最小。求这个最小花费和vi。
题解:用朱刘算法求最小树形图,复杂度是O(n*m),遍历每个点跑一次朱刘算法是O(n*n*m)。需要优化,这时候可以想到设一个虚拟的根v,v与每个点都可达,且权值很大为sum(原图所有边权和)。这样跑完朱刘算法后得到答案ans。如果ans-sum>=sum,说明原图不连通,因为v与原图至少连了两个点。
代码:
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<string>
#include<bitset>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<iomanip>
#include<iostream>
#define debug cout<<"aaa"<<endl
#define d(a) cout<<a<<endl
#define mem(a,b) memset(a,b,sizeof(a))
#define LL long long
#define lson l,mid,root<<1
#define rson mid+1,r,root<<1|1
#define MIN_INT (-2147483647-1)
#define MAX_INT 2147483647
#define MAX_LL 9223372036854775807i64
#define MIN_LL (-9223372036854775807i64-1)
using namespace std;
const int N = 1000 + 5;
const int mod = 1000000000 + 7;
const double eps = 1e-8;
int id[N],vis[N],pre[N],pos;
LL dis[N],INF=1e17;
struct node{
int u,v,cost;
}edge[N*N];
LL zhuliu(int root,int V,int E){
LL sum=0;
while(true){
for(int i=0;i<V;i++){
dis[i]=INF;
}
//找最小入边
for(int i=0;i<E;i++){
int u=edge[i].u,v=edge[i].v;
if(u!=v&&dis[v]>edge[i].cost){
dis[v]=edge[i].cost;
pre[v]=u;
if(u==root){
pos=i;
}
}
}
//某点不存在入边,算法结束
for(int i=0;i<V;i++){
if(dis[i]==INF&&i!=root){
return -1;
}
}
int cnt=0;
mem(id,-1),mem(vis,-1);
dis[root]=0;
//找环
for(int i=0;i<V;i++){
int v=i;
sum+=dis[i];
while(id[v]==-1&&vis[v]!=i&&v!=root){
vis[v]=i;
v=pre[v];
}
//找到环的时候缩点编号
if(id[v]==-1&&v!=root){
for(int u=pre[v];u!=v;u=pre[u]){
id[u]=cnt;
}
id[v]=cnt++;
}
}
//如果没有环,则以找到最小树形图,算法结束
if(!cnt){
break;
}
//把余下的不在环里的点编号
for(int i=0;i<V;i++){
if(id[i]==-1){
id[i]=cnt++;
}
}
//更新距离
for(int i=0;i<E;i++){
int u=edge[i].u,v=edge[i].v;
edge[i].u=id[u];
edge[i].v=id[v];
if(id[u]!=id[v]){
edge[i].cost-=dis[v];
}
}
V=cnt;
root=id[root];
}
return sum;
}
int main(){
int n,m;
LL ans,temp;
while(~scanf("%d%d",&n,&m)){
temp=1;
for(int i=0;i<m;i++){
scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].cost);
temp+=edge[i].cost;
}
//以0为虚拟节点
for(int i=m;i<n+m;i++){
edge[i].u=n;
edge[i].v=i-m;
edge[i].cost=temp;
}
ans=zhuliu(n,n+1,n+m);
if(ans==-1||ans-temp>=temp){
puts("impossible\n");
}
else{
printf("%lld %d\n\n",ans-temp,pos-m);
}
}
return 0;
}