Pytorch的API总览

本文详细介绍了PyTorch的各个核心模块,包括torch包、torch.nn、torch.autograd、torch.cuda等,涉及张量操作、神经网络、自动微分、GPU计算、分布式计算、概率分布、模型优化、量化技术等方面,旨在提供一个全面的PyTorch API概览。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

torch包包含多维张量的数据结构,并定义了多维张量的数学运算。此外,它还提供了许多实用程序来高效地序列化张量和任意类型,以及其他有用的实用程序。它有一个CUDA的副本,可以让你运行你的张量计算在一个NVIDIA GPU,并且计算能力>= 3.0。

定义实现神经网络的各种函数。

定义实现神经网络的各种函数。

用于生成新的张量。

张量的属性。

torch.autograd提供实现任意标量值函数的自动微分的类和函数。它只需要对现有代码进行最小的修改—您只需要声明张量s,使用requires_grad=True关键字来计算它的梯度。

这个包增加了对CUDA张量类型的支持,它实现了与CPU张量相同的功能,但是它们利用gpu进行计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wanderer001

ROIAlign原理

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值