一、极值点
- 极值的必要条件:
- 极值的第一充分条件:
且
在
两侧变号
- 极值的第二充分条件:
且
(
为极小值,
为极大值)
- 极值的第三充分条件:设
在
处最低阶不为零的导数的阶为
,若
为偶数
是极值点。若
为奇数
是不是极值点
二、拐点
函数的拐点可理解为导数
的极值点,因此上述关于极值点的结论都可“稍加改变”后用于判断拐点,下面是一些常用结论:
- 拐点的必要条件:
- 拐点的充分条件:
且
在
左右两侧变号
- 利用三阶导数的判别法:
,
三、情形分析
情形一:,
既不是
的极值点也不是拐点。例如一次函数
,有
,
,但显然
既不是
的极值点也不是拐点
是
的拐点,例如
,由于
,
,
,故
是
的拐点
情形二:,
是
的极值点,例如
,满足
,
,显然
是
的极(小)值点
情形三:,
是
的极值点。例如
满足
,显然
是
的极小值点
是
的拐点。例如
,满足
,显然
是
的拐点
既不是
的极值点也不是拐点。例如
(常值函数),显然任意点处一、二阶导数都等于0,但
既无极值点也无拐点
情形四:,
- 这是平凡的情形,显然
既不是
的极值点也不是拐点。