引言
最近一个项目需要使用多叉树结构来存储数据,但是基于平时学习的都是二叉树的结构,以及网上都是二叉树为基础来进行学习,所以今天实现一个多叉树的数据结构。
理论基础
树和二叉树:
多叉树:多叉树,顾名思义,就是一个节点可能有若干个子节点,构造的一个较为复杂的树结构。
树的遍历:树的遍历一般认为有三种:前序遍历二叉树、中序遍历二叉树、后序遍历二叉树[2]。
(1). 前序遍历二叉树。若二叉树为空,则为空操作,返回空否则访问根结点-->前序遍历左子树-->前序遍历右子树。
(2). 中序遍历二叉树。 若二叉树为空,则为空操作,返回空否则中序遍历左子树-->访问根结点-->中序遍历右子树。
(3). 后序遍历二叉树。若二叉树为空,则为空操作,返回空否则后序遍历左子树-->后序遍历右子树-->访问根结点。
本文特别强调:本文只有两种遍历方法,先根遍历和先叶遍历,先根遍历是首先遍历根节点,然后访问按顺序从左到右遍历子节点;先叶遍历指首先按照顺序从左至右遍历叶子节点,然后遍历根节点。
C++指针: 指针即为地址,一个指针对应一个地址,*p = &a
[3−4]
,其中a保存的是变量值,具体数据,*p
或者 &a
表示的是一个地址编号,比如:0x80651165
,即:a = 5
, p = 0x80651165
,一句话描述,变量存储的是数据,指针存放的是地址,通过指针可以找到变量存放的位置,从而找到变量的具体值;
结构体:结构体可以理解为一个对象(但是class 和 struct 是有不同之处的),它是一种用户自定义的数据类型。
基于C++的N叉树的实现
头文件:
#include <iostream>
#include <vector>
using namespace std;
#ifndef DBM_MTREE_H
#define DBM_MTREE_H
typedef int T;
typedef struct MNode {
T element;
vector<MNode*> children;
MNode *Parent;
} MNode;
class MTree {
private:
MNode *root;
public:
void init(MNode *root);
void putChild(MNode* node,MNode* parent);
void putChildren(vector<MNode*> nodes, MNode *parent);
void tranversal(MNode *root);
void tranversal();
int getMaxDepth(MNode *root,vector<MNode*> nodes);
};
实现:
void MTree::init(MNode *root) { this->root = root; }
void MTree::putChild(MNode *node, MNode *parent) {
parent->children.push_back(node);
node->Parent = parent;
}
void MTree::putChildren(vector<MNode *> nodes, MNode *parent) {
for (int i = 0; i < nodes.size(); ++i) {
putChild(nodes[i], parent);
}
}
void MTree::tranversal() {
this->tranversal(this->root);
}
void MTree::tranversal(MNode *root) {
vector<MNode *> nodes = root->children;
for (int i = 0; i < nodes.size(); ++i) {
if (nodes[i]->children.size() > 0)
tranversal(nodes[i]);
else
cout << nodes[i]->element << ",";
}
cout << root->element << ",";
}
int MTree::getMaxDepth(MNode *root,vector<MNode*> nodes) {
auto iResult = 0;
return iResult;
}
实验验证
本章小结
学习数据结构一定是从思想角度去理解算法和数据结构的意义,而不要仅仅局限于某一种数据结构和算法,将一种算法和结构扩展化、实践化才是学习数据结构的根本目的,锻炼自己对问题建模的能力。
参考文献
[1]. 树和二叉树的定义
[2]. 二叉树遍历算法总结
[3]. C++指针详解