给你两个二进制字符串 a
和 b
,以二进制字符串的形式返回它们的和。
示例 1:
输入:a = "11", b = "1" 输出:"100"
示例 2:
输入:a = "1010", b = "1011" 输出:"10101"
题目分析
考虑一个最朴素的方法:先将和转化成十进制数,求和后再转化为二进制数。利用 Python 和 Java 自带的高精度运算,我们可以很简单地写出这个程序:
class Solution:
def addBinary(self, a, b) -> str:
return '{0:b}'.format(int(a, 2) + int(b, 2))
如果的位数是,的位数为,这个算法的渐进时间复杂度为。但是这里非常简单的实现基于 Python 和 Java 本身的高精度功能,在其他的语言中可能并不适用,并且在 Java 中:
如果字符串超过位,不能转化为Integer
如果字符串超过位,不能转化为Long
如果字符串超过位,不能转化为BigInteger
因此,为了适用于长度较大的字符串计算,我们应该使用更加健壮的算法。
方法一:模拟
思路和算法
我们可以借鉴「列竖式」的方法,末尾对齐,逐位相加。在十进制的计算中「逢十进一」,二进制中我们需要「逢二进一」。
具体的,我们可以取,循环次,从最低位开始遍历。我们使用一个变量表示上一个位置的进位,初始值为。记当前位置对其的两个位为和 ,则每一位的答案为,下一位的进位为。重复上述步骤,直到数字和 的每一位计算完毕。最后如果的最高位不为,则将最高位添加到计算结果的末尾。
注意,为了让各个位置对齐,你可以先反转这个代表二进制数字的字符串,然后低下标对应低位,高下标对应高位。当然你也可以直接把和中短的那一个补直到和长的那个一样长,然后从高位向低位遍历,对应位置的答案按照顺序存入答案字符串内,最终将答案串反转。这里的代码给出第一种的实现。
代码
class Solution {
public:
string addBinary(string a, string b) {
string ans;
reverse(a.begin(), a.end());
reverse(b.begin(), b.end());
int n = max(a.size(), b.size()), carry = 0;
for (size_t i = 0; i < n; ++i) {
carry += i < a.size() ? (a.at(i) == '1') : 0;
carry += i < b.size() ? (b.at(i) == '1') : 0;
ans.push_back((carry % 2) ? '1' : '0');
carry /= 2;
}
if (carry) {
ans.push_back('1');
}
reverse(ans.begin(), ans.end());
return ans;
}
};
复杂度分析
。
时间复杂度:,这里的时间复杂度来源于顺序遍历和。
空间复杂度:,除去答案所占用的空间,这里使用了常数个临时变量。