目录
前提:二叉树前序、中序、后序遍历相互求法
- 前序+中序遍历->确定唯一的二叉树
- 后序+中序遍历->确定唯一的二叉树
- 前序+后序无法确定唯一的二叉树
题目: 已知前序+中序遍历->重建二叉树
剑指 Offer 07. 重建二叉树 = Leetcode 105
输入某二叉树的前序遍历和中序遍历的结果,请构建该二叉树并返回其根节点。
假设输入的前序遍历和中序遍历的结果中都不含重复的数字。
题解:已知前序+中序遍历->重建二叉树(遍历方法)
- 思路:
- 1.判断数组大小是否为空,若为空则说明空节点,则返回null
- 2.若不为空,就获取前续数组的第一个元素作为根节点元素rootVal
- 3.确定切割点:找到前序数组第一个元素 rootVal 在中序数组的下标index,作为切割点
- 4.切割中序数组,切成中序左数组和中序右数组(一定要先切中序数组,勿搞混顺序)
- 5.切割前序数组,切成前序左数组和前序右数组
- 6.递归处理左子树和右子树
- 代码:
/**
* Definition for a binary tree node.
* function TreeNode(val) {
* this.val = val;
* this.left = this.right = null;
* }
*/
/**
* @param {number[]} preorder
* @param {number[]} inorder
* @return {TreeNode}
*/
var buildTree = function(preorder, inorder) {
if (!preorder.length) return null;
const rootVal = preorder.shift(); // 从前序遍历的数组中获取中间节点的值, 即数组第一个值
const index = inorder.indexOf(rootVal); // 获取中间节点在中序遍历中的下标
const root = new TreeNode(rootVal); // 创建中间节点
root.left = buildTree(preorder.slice(0, index), inorder.slice(0, index)); // 创建左节点
root.right = buildTree(preorder.slice(index), inorder.slice(index + 1)); // 创建右节点
return root;
};
- 复杂度分析:
- 时间复杂度:O(N)
- 空间复杂度: O(N)
题目: 已知后序+中序遍历->重建二叉树
Leetcode 106
给定两个整数数组 inorder 和 postorder ,其中 inorder 是二叉树的中序遍历, postorder 是同一棵树的后序遍历,请你构造并返回这颗 二叉树 。
题解:已知后序+中序遍历->重建二叉树(遍历方法)
- 思路:
- 1.判断数组大小是否为空,若为空则说明空节点,则返回null
- 2.若不为空,就获取后续数组的最后一个元素为根节点元素rootVal
- 3.确定切割点:找到后序数组最后一个元素 rootVal 在中序数组的下标index,作为切割点
- 4.切割中序数组,切成中序左数组和中序右数组(一定要先切中序数组,勿搞混顺序)
- 5.切割后序数组,切成后序左数组和后序右数组
- 6.递归处理左子树和右子树
- 代码:
/**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {number[]} inorder
* @param {number[]} postorder
* @return {TreeNode}
*/
var buildTree = function(inorder, postorder) {
if(!inorder.length) return null;
const rootVal = postorder.pop(); // 后序遍历的数组中的最后一个元素 = 中间节点(根节点)的值
let index = inorder.indexOf(rootVal); // 获取中间节点(根节点)在中序遍历的数组中下表
const root = new TreeNode(rootVal);// 创建中间节点(根节点)
root.left = buildTree(inorder.slice(0,index),postorder.slice(0,index)); // 建立左子树
root.right = buildTree(inorder.slice(index+1),postorder.slice(index)); // 建立右子树
return root;
};
- 复杂度分析:
- 时间复杂度:O(N)
- 空间复杂度: O(N)
总结
- 重点是确定切割点(即是找到根节点在中序数组中的下标)
- 结合图解,分割中序数组+前/后序数组,注意切割的下表。
- 别忘了确定确定终止条件:判断当前数组是否为空,return null;