剑指 Offer丨 10- I. 斐波那契数列(JavaScript版本)

题目: 10- I. 斐波那契数列

在这里插入图片描述

题解一:动态规划:基本应用

  • 思路:动态规划的五部曲
    • 确定dp数组(dp table)以及下标的含义:dp[i]的定义为:第i个数的斐波那契数值是dp[i]
    • 确定递推公式::状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
    • dp数组如何初始化 dp[0]=0;dp[1]=1
    • 确定遍历顺序从递归公式dp[i] = dp[i - 1] + dp[i - 2];
    • 举例推导dp数组
  • 代码:
/**
 * @param {number} n
 * @return {number}
 */
var fib = function(n) {
 const m = 1000000007;
 let dp = [0,1];
 for(let i=2;i<=n;i++){
     dp[i] = (dp[i-1] + dp[i-2])%m;
 }
 return dp[n];
};
  • 复杂度分析:
    • 时间复杂度:O(n)
    • 空间复杂度: O(n)

题解二:动态规划:滚动数组思想

  • 思路:
    • 斐波那契数的边界条件是 F(0)=0和 F(1)=1。
    • 当 n>1 时,每一项的和都等于前两项的和,因此有如下递推关系:F(n)=F(n-1)+F(n-2)
    • 由于 F(n) 只和F(n−1) 与 F(n−2) 有关,因此可以使用**「滚动数组思想」**把空间复杂度优化成 O(1)
    • 即是结果只依赖前两个元素的结果
    • **滚动数组思想:**初始化: let p=0,q=0,r=1;,滚动后: p=q; q=r; r=(p+q)%m
  • 代码:
/**
 * @param {number} n
 * @return {number}
 */
var fib = function(n) {
 const m = 1000000007;
 if(n<2){
     return n
 }
 let p=0,q=0,r=1;
 for(let i=2;i<=n;i++){
     p=q;
     q=r;
     r=(p+q)%m
     
 }
 return r;
};
  • 复杂度分析:
    • 时间复杂度:O(n)
    • 空间复杂度: O(1)

总结

  • 注意:题目中要求结果需要取模
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值