题解一:动态规划:基本应用
- 思路:动态规划的五部曲
- 确定dp数组(dp table)以及下标的含义:dp[i]的定义为:第i个数的斐波那契数值是dp[i]
- 确定递推公式::状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
- dp数组如何初始化
dp[0]=0;dp[1]=1
- 确定遍历顺序从递归公式dp[i] = dp[i - 1] + dp[i - 2];
- 举例推导dp数组
- 代码:
var fib = function(n) {
const m = 1000000007;
let dp = [0,1];
for(let i=2;i<=n;i++){
dp[i] = (dp[i-1] + dp[i-2])%m;
}
return dp[n];
};
题解二:动态规划:滚动数组思想
- 思路:
- 斐波那契数的边界条件是 F(0)=0和 F(1)=1。
- 当 n>1 时,每一项的和都等于前两项的和,因此有如下递推关系:F(n)=F(n-1)+F(n-2)
- 由于 F(n) 只和F(n−1) 与 F(n−2) 有关,因此可以使用**「滚动数组思想」**把空间复杂度优化成 O(1)
- 即是结果只依赖前两个元素的结果
- **滚动数组思想:**初始化:
let p=0,q=0,r=1;
,滚动后: p=q; q=r; r=(p+q)%m
- 代码:
var fib = function(n) {
const m = 1000000007;
if(n<2){
return n
}
let p=0,q=0,r=1;
for(let i=2;i<=n;i++){
p=q;
q=r;
r=(p+q)%m
}
return r;
};
总结