KV 缓存:深度解析大型语言模型推理的内存挑战

KV缓存是一种用于优化大型语言模型(LLM)推理效率的策略。在LLM的推理过程中,自注意力机制的计算量会随着序列长度的平方增长,导致推理过程需要大量的计算资源。为了解决这个问题,KV缓存通过存储过去token的键值张量来避免重复计算,从而将计算复杂度从平方级降低到线性级。

KV缓存的作用是在推理过程中优化输入序列,减少计算量。它通过存储过去token的键值张量,使得在生成当前token时可以直接使用已经计算过的注意力权重,而不需要重新计算。这样可以大大减少计算量,提高推理效率。

基于KV缓存的加速策略主要包括以下几个方向:

  1. 窗口(Window):通过限制KV缓存的大小,只保留最近的一部分键值对,可以减少显存占用和计算量[1]

  2. 稀疏化(Sparse):将KV缓存中的稠密张量转换为稀疏张量,可以减少显存占用和计算量[1]

  3. 量化(Quantization):将KV缓存中的浮点数张量量化为低精度的整数张量,可以减少显存占用和计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值