KV缓存是一种用于优化大型语言模型(LLM)推理效率的策略。在LLM的推理过程中,自注意力机制的计算量会随着序列长度的平方增长,导致推理过程需要大量的计算资源。为了解决这个问题,KV缓存通过存储过去token的键值张量来避免重复计算,从而将计算复杂度从平方级降低到线性级。
KV缓存的作用是在推理过程中优化输入序列,减少计算量。它通过存储过去token的键值张量,使得在生成当前token时可以直接使用已经计算过的注意力权重,而不需要重新计算。这样可以大大减少计算量,提高推理效率。
基于KV缓存的加速策略主要包括以下几个方向: