“故事中最重要的是角色,角色,还是角色。” - 鲍勃·盖尔
这句话道出了角色在故事中的重要性。无论是小说、剧本还是电影,一个鲜活的人物形象,往往能够让故事更加引人入胜,令人难以忘怀。
那么,如何才能更好地理解和分析故事中的角色呢?传统的分析方法往往依赖于对人物行为、语言、心理等方面的描述,但这些描述往往过于笼统,难以捕捉到角色的复杂性和多面性。
近年来,随着人工智能技术的发展,一些研究人员开始尝试使用计算机来分析和生成故事。这些研究成果为我们提供了新的视角,也为我们理解角色提供了新的工具。
CHIRON:一个基于“人物卡”的角色表示方法
本文介绍了一种名为 CHIRON 的角色表示方法,它借鉴了专业作家创作人物的方法,将角色信息以“人物卡”的形式进行组织和呈现。
CHIRON “人物卡”包含四个主要类别:
- 对话: 角色的说话方式,包括口音、口头禅、表达风格等等。
- 外貌/性格: 角色的外貌和性格特征,包括身高、伤疤、勇敢、傲慢等等。
- 知识: 角色所掌握的知识和信息,包括家庭成员、悲惨的过去、藏宝地点等等。
- 目标: 角色的目标和动机,包括寻找宝藏、完成任务、复仇等等。
CHIRON 的生成和验证模块
CHIRON 的生成过程分为两个步骤:
- 生成模块: 利用预训练语言模型,通过问答的方式从故事片段中提取角色信息,并将其归类到不同的类别中。
- 验证模块: 使用自动推理和领域特定的蕴含模型,对生成的信息进行验证,确保信息的准确性和有效性。
验证模块:确保信息准确性
验证模块的关键在于判断一个关于角色的陈述是否能够从故事片段中推断出来。为了实现这一点,研究人员使用了两个关键技术:
- 自动推理: 通过预训练语言模型,生成一些中间推理步骤,帮助模型更准确地判断蕴含关系。
- 领域特定的蕴含模型: 对预训练语言模型进行微调,使其能够更准确地判断关于角色的陈述是否与故事片段相符。
CHIRON 的应用:掩码角色预测
研究人员使用掩码角色预测任务来验证 CHIRON 的有效性。该任务要求模型根据故事片段和角色信息,预测被掩盖的角色名称。
实验结果表明,CHIRON 在掩码角色预测任务中显著优于传统的基于摘要的基线方法,证明了 CHIRON 在处理角色相关任务方面的优势。
CHIRON 的应用:故事分析
除了用于下游任务,CHIRON 还可以用于自动分析故事。研究人员提出了一个名为“密度”的指标,用于衡量故事中角色的中心程度。
“密度”指标定义为角色卡中句子数量除以故事中句子数量的平均值。研究人员发现,该指标与人类对故事中角色重要性的判断高度相关。
结论
CHIRON 是一种新颖的角色表示方法,它能够有效地捕捉和组织故事中的角色信息,并为下游任务和故事分析提供有力的支持。未来,研究人员将继续探索 CHIRON 在故事生成方面的应用,以期生成更加角色驱动的故事。
参考文献
- Akoury, R., Chakrabarty, T., & Lapata, M. (2020). STORIUM: A dataset of collaborative narratives for story understanding. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 5164-5174.
- Yang, J., Chakrabarty, T., & Lapata, M. (2023). DOC: Towards controllability in long-form story generation. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, 12295-12310.
- Yang, J., Chakrabarty, T., & Lapata, M. (2022). Re3: Towards controllable rewriting and editing for story generation. Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, 5087-5099.