GraphReader:基于图的智能体,增强大型语言模型的长文本处理能力

大型语言模型 (LLM) 在自然语言理解和生成方面取得了显著进步,但受限于上下文窗口和内存使用,它们在处理长文本时仍然面临挑战。现有的长文本处理方法主要分为模型级别和智能体级别,但都存在一定的局限性:模型级别方法训练成本高昂,且容易忽略长文本中的关键细节;智能体级别方法则难以捕捉多跳关系和长距离依赖,在处理超长文本时效果不佳。

为了解决这些问题,本文提出了一种名为 GraphReader基于图的智能体系统,它能够将长文本结构化为图,并利用智能体自主探索图结构,从而有效地处理长文本信息。

1. GraphReader 的工作原理

GraphReader 的工作流程主要分为三个阶段:图构建、图探索和答案推理

1.1 图构建
  • 将长文本分割成多个文本块 (Chunk),并保留段落结构。
  • 使用 LLM 从每个文本块中提取关键元素 (Key Element) 和原子事实 (Atomic Fact)。
  • 将关键元素和原子事实构建成图结构,其中节点代表关键元素及其相关的原子事实,边代表节点之间的关系。
1.2 图探索
  • 智能体根据问题和预先设定的理性计划,选择初始节点开始探索。
  • 智能体首先探索节点的原子事实,然后深入阅读相关的文本块,并不断记录新的见解和反思当前情况,以优化探索过程。
  • 智能体根据问题、理性计划和笔记内容,选择下一个要探索的相邻节点,直到收集到足够的信息来回答问题。
1.3 答案推理
  • 将所有智能体收集到的笔记汇总,并使用 LLM 进行推理和生成最终答案。
  • LLM 首先分析每个笔记,并利用其他笔记中的信息进行补充和验证,最终综合所有信息生成最终答案。

2. 实验结果

GraphReader 在多个长文本问答基准测试中表现出色,包括多跳长文本问答 (HotpotQA、2WikiMultihopQA、MuSiQue) 和单跳长文本问答 (NarrativeQA)。

2.1 超越 GPT-4-128k

实验结果表明,GraphReader 在使用 4k 上下文窗口的情况下,在 16k 到 256k 的不同文本长度上,始终优于 GPT-4-128k。这表明 GraphReader 能够有效地利用图结构捕捉长距离依赖关系,并利用智能体进行高效的探索,从而在有限的上下文窗口内处理超长文本。

2.2 强大的召回能力

GraphReader 在关键信息召回方面也表现出色。在 HotpotWikiQA-mixup 数据集上,GraphReader 始终优于其他基线方法,即使在 256k 的超长文本长度下,仍然能够保持约 60% 的召回率。

3. 结论

GraphReader 是一种基于图的智能体系统,它能够有效地增强大型语言模型的长文本处理能力。通过将长文本结构化为图,并利用智能体进行自主探索,GraphReader 能够在有限的上下文窗口内捕捉长距离依赖关系,并高效地收集关键信息,从而在各种长文本问答任务中取得优异的成绩。

4. 局限性

GraphReader 目前依赖于闭源的 GPT-4 API,未来需要收集数据并训练开源模型,以便更好地服务于更广泛的社区。此外,智能体的效率取决于其规划和推理能力,未来需要进一步提升这些能力,以提高 GraphReader 的效率和性能。

  • 9
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值