RankRAG:统一大语言模型中的上下文排序与检索增强生成

1. 引言

近年来,检索增强生成(Retrieval-Augmented Generation, RAG)技术在知识密集型自然语言处理任务中取得了广泛应用。RAG通过结合外部知识库的检索能力和大语言模型(Large Language Models, LLMs)的生成能力,有效地提升了模型在处理长尾知识、提供最新信息以及适应特定领域和任务方面的表现。

然而,传统的RAG流程存在一些局限性:

  1. 大语言模型难以有效处理过多的上下文片段,即使在长上下文窗口的情况下也是如此。这不仅出于效率考虑,更重要的是,较短的top-k(如5或10)上下文通常能带来更高的生成准确率。

  2. 在使用较小的k值时,需要一种机制来确保相关内容的高召回率。仅依赖检索模型可能不足以应对这一挑战,因为学习有效的局部对齐以支持准确匹配存在困难。

  3. 虽然可以使用单独的排序模型来获取最相关的top-k上下文,但这些专家排序模型的零样本泛化能力可能相对有限,难以与通用大语言模型相比。

基于以上考虑,研究人员提出了一种新颖的指令微调框架——RankRAG。该框架旨在通过指令微调单个大语言模型,同时实现RAG中的上下文排序和答案生成两个目的。RankRAG的核心思想是利用大语言模型在问答任务中提取相关上下文的能力,将其视为判断上下文是否与问题相关的"对偶能力"。这种洞察启发了研究者设计一种统一的框架,将上下文排序和答案生成融为一体。

2. RankRAG方法

2.1 两阶段指令微

03-28
### MCP API 的文档与使用教程 MCP 是一种用于增强大型语言模型 (LLM) 功能的技术框架,它通过提示(Prompts)、资源(Resources)以及工具(Tools)这三种核心原语来扩展 LLM 能力[^2]。Apifox 平台也认识到 MCP 技术在 API 开发领域的重要作用,并将其应用于实际场景中[^1]。 为了实现将 `/Users/syw/project/wechatAr` 文件夹下的所有文件上传至远程服务器 `47.93.xx.xx` 用户名 `root` 下的 `/opt/ll` 目录的操作,可以基于 MCP 工具功能构建一个自定义的服务逻辑。以下是具体实现方法: #### 实现方案 利用 SCP 命令完成文件传输任务,并结合 MCP 的 Tool 功能封装此操作以便于后续调用。当关键词为“上传微信目录”时,触发该工具执行相应动作。 ```python import subprocess def upload_wechat_directory(): source_dir = "/Users/syw/project/wechatAr/*" target_server = "root@47.93.xx.xx:/opt/ll/" try: result = subprocess.run(["scp", "-r", source_dir, target_server], check=True) return {"status": "success", "message": f"All files from {source_dir} have been uploaded to {target_server}"} except Exception as e: return {"status": "error", "message": str(e)} # 将上述函数注册为 MCP 中的一个 tool tools = { "upload_wechat_directory_tool": upload_wechat_directory, } # 定义 prompt 和 resource 配置部分省略... ``` 以上代码片段展示了如何创建一个名为 `upload_wechat_directory_tool` 的工具并将其集成到 MCP 系统里去[^3]。每当接收到匹配条件的消息比如含有特定关键字的时候就会激活对应的行为即启动SCP进程从而达成目标需求。 #### 进一步学习资料推荐 对于希望深入研究或者实践更多关于 MCP 应用案例的人士来说,《MCP 教程进阶篇》提供了丰富的实例分析和技术细节值得参考阅读;另外《MCP 极简入门:超快速上手运行简单的 MCP 服务和 MCP 客户端》同样是非常好的起点材料之一可以帮助初学者迅速掌握基础概念及其运作机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值