Leduc Hold‘em:简化版德州扑克

Leduc Hold’em是一种简化版的德州扑克游戏,由加拿大阿尔伯塔大学的研究人员设计,主要用于人工智能和博弈论研究。这个游戏保留了德州扑克的核心元素,同时大大简化了游戏规则,使其成为研究复杂决策问题的理想环境。

游戏规则

牌型

Leduc Hold’em使用一副精简的扑克牌,通常只包含6张牌:

  • 红桃J、Q、K
  • 黑桃J、Q、K

牌型大小

牌型大小的比较规则如下:

  1. 对子 > 单牌
  2. 在单牌中: K > Q > J
  3. 花色不影响大小

游戏流程

  1. 游戏通常在两名玩家之间进行。

  2. 每位玩家首先需要下盲注(通常是1个筹码)。

  3. 每位玩家发一张私人牌(hole card)。

  4. 第一轮下注。

  5. 发一张公共牌(community card)。

  6. 第二轮下注。

  7. 比牌,确定胜者。

下注规则

  • 每轮下注通常限制为两次加注。
  • 玩家可以选择跟注(call)、加注(raise)或弃牌(fold)。
  • 具体的下注限制可能因实现而异,有些版本可能允许无限加注。

与标准德州扑克的区别

  1. 牌数:Leduc Hold’em只使用6张牌,而标准德州扑克使用一整副52张牌。

  2. 私人牌:每位玩家只有1张私人牌,而不是2张。

  3. 公共牌:只有1张公共牌,而不是5张。

  4. 回合数:只有两轮下注,而不是四轮。

  5. 牌型:由于牌数有限,可能的牌型也大大简化。

在人工智能研究中的应用

Leduc Hold’em因其简化但保留了不完全信息博弈特性的设计,成为了强化学习和博弈论研究中的重要测试环境。它具有以下特点:

  1. 状态空间小:相比标准德州扑克,Leduc Hold’em的可能状态数量大大减少,使得某些算法(如CFR)可以在合理的时间内收敛。

  2. 决策复杂性:尽管规则简化,但仍然保留了bluff(诈唬)、value betting(价值下注)等策略元素。

  3. 不完全信息:玩家无法看到对手的私人牌,需要在不确定的情况下做出决策。

  4. 零和博弈:一方的收益即为另一方的损失,符合许多博弈论研究的假设。

在RLCard平台中,Leduc Hold’em是一个重要的游戏环境。研究者可以使用各种算法(如DQN、CFR、NFSP等)在这个环境中训练AI智能体,并进行性能评估。

示例代码

以下是使用RLCard创建Leduc Hold’em环境并运行随机智能体的示例代码:

import rlcard
from rlcard.agents import RandomAgent

# 创建Leduc Hold'em环境
env = rlcard.make('leduc-holdem')

# 创建两个随机智能体
agent_0 = RandomAgent(num_actions=env.num_actions)
agent_1 = RandomAgent(num_actions=env.num_actions)

env.set_agents([agent_0, agent_1])

# 进行一局游戏
print("开始一局Leduc Hold'em游戏:")
state, player_id = env.reset()
while not env.is_over():
    action = env.agents[player_id].step(state)
    print(f"玩家 {player_id} 执行动作: {env.action_shape[action]}")
    state, player_id = env.step(action)

# 打印游戏结果
payoffs = env.get_payoffs()
print(f"\n游戏结束。玩家0收益: {payoffs[0]}, 玩家1收益: {payoffs[1]}")

这段代码创建了一个Leduc Hold’em环境,设置两个随机智能体,并模拟了一局完整的游戏过程。

结论

Leduc Hold’em作为一个简化但富有挑战性的扑克变种,为人工智能研究提供了一个理想的测试平台。它允许研究者在一个相对简单的环境中探索复杂的决策策略,为开发更先进的AI算法奠定基础。通过RLCard平台,研究者可以方便地在Leduc Hold’em环境中实现和测试各种强化学习算法,推动不完全信息博弈AI的发展。

【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 基于深度强化学习的德州扑克AI算法优化python源码+项目说明+模型.zip 本论文题目为基于深度强化学习的德州扑克AI算法优化 结果储存在result.xlsx,以每个图的数据进行呈现,包括中期报告和论文的数据 本论文三个实验环境为: Limit leduc holdem poker(有限注德扑简化版): 文件夹为limit_leduc,写代码的时候为了简化,使用的环境命名为NolimitLeducholdemEnv,但实际上是limitLeducholdemEnv Nolimit leduc holdem poker(无限注德扑简化版): 文件夹为nolimit_leduc_holdem3,使用环境为NolimitLeducholdemEnv(chips=10) Limit holdem poker(有限注德扑) 文件夹为limitholdem,使用环境为LimitholdemEnv 本论文所设计的agent位于"/实验环境/agents/DeepCFRagent3.py",是由DeepCFRagent改进来的agent,在实验中,我们与CFR,CFR+,MCCFR,DeepCFR进行对比,Limit leduc holdem poker和Nolimit leduc holdem poker使用exploitability进行评估(exploitability衡量算法与纳什均衡的距离),Limit holdem poker环境过大,使用与RandomAgent作战的reward作为评估指标 本论文工作量: 1.本论文所使用的agent,800+行 2.本论文复现出的CFR,CFR+,MCCFR,DeepCFR算法,CFR,CFR+,MCCFR,每个算法400行左右,DeepCFR为600行,以上算法都未开源 3.本文使用的环境,我们使用RLcard作为我们的底层,每个环境大约为500行左右 4.对算法的效果进行测试,主要为含有test的py文件,此部分大约为500行左右 ......
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值